1. Scott Aaronson (2015): Read the fine print. Nature Physics 11(4), pp. 291–293, doi:10.1038/nphys3272.
  2. Itai Arad & Zeph Landau (2010): Quantum Computation and the Evaluation of Tensor Networks. SIAM Journal on Computing 39(7), pp. 30893121, doi:10.1137/080739379.
  3. Marcello Benedetti, Erika Lloyd, Stefan Sack & Mattia Fiorentini (2019): Parameterized quantum circuits as machine learning models. Quantum Science and Technology 4(4), pp. 043001, doi:10.1088/2058-9565/ab4eb5.
  4. Steven Bird, Ewan Klein & Edward Loper (2009): Natural Language Processing with Python. O'Reilly Media.
  5. Josef Bolt, Bob Coecke, Fabrizio Genovese, Martha Lewis, Daniel Marsden & Robin Piedeleu (2016): Interacting Conceptual Spaces. Electronic Proceedings in Theoretical Computer Science 221, pp. 1119, doi:10.4204/eptcs.221.2.
  6. Wojciech Buszkowski (2001): Lambek Grammars Based on Pregroups. In: Philippe de Groote, Glyn Morrill & Christian Retoré: Logical Aspects of Computational Linguistics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 95–109, doi:10.1007/3-540-48199-0_6.
  7. Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini & Leonard Wossnig (2018): Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2209), pp. 20170551, doi:10.1098/rspa.2017.0551.
  8. S. Clark, B. Coecke, E. Grefenstette, S. Pulman & M. Sadrzadeh (2014): A quantum teleportation inspired algorithm produces sentence meaning from word meaning and grammatical structure. Malaysian Journal of Mathematical Sciences 8, pp. 15–25. Available at
  9. Stephen Clark, Bob Coecke & Mehrnoosh Sadrzadeh (2013): The Frobenius Anatomy of Relative Pronouns. In: Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13). Association for Computational Linguistics, Sofia, Bulgaria, pp. 41–51. Available at
  10. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics 13. IOP Publishing, pp. 043016, doi:10.1088/1367-2630/13/4/043016.
  11. Bob Coecke, Mehrnoosh Sadrzadeh & Stephen Clark (2010): Mathematical foundations for a compositional distributional model of meaning. Available at
  12. Antonin Delpeuch (2017): Autonomization of Monoidal Categories, doi:10.31219/
  13. Vedran Dunjko & Hans J Briegel (2018): Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics 81(7), pp. 074001, doi:10.1088/1361-6633/aab406.
  14. Vedran Dunjko, Jacob M. Taylor & Hans J. Briegel (2017): Advances in quantum reinforcement learning. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), doi:10.1109/smc.2017.8122616.
  15. Lawrence Dunn & Jamie Vicary (2019): Coherence for Frobenius pseudomonoids and the geometry of linear proofs. Logical Methods in Computer Science Volume 15, Issue 3, doi:10.23638/LMCS-15(3:5)2019.
  16. Katrin Erk (2009): Representing Words as Regions in Vector Space. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning, CoNLL 09. Association for Computational Linguistics, USA, pp. 5765, doi:10.3115/1596374.1596387.
  17. Giovanni de Felice, Elena Di Lavore, Mario Román & Alexis Toumi (2020): Functorial Language Games for Question Answering.
  18. Giovanni de Felice, Konstantinos Meichanetzidis & Alexis Toumi (2019): Functorial Question Answering. Available at
  19. Giovanni de Felice, Alexis Toumi & Bob Coecke (2020): DisCoPy: Monoidal Categories in Python.
  20. Angel J. Gallego & Roman Orus (2017): Language Design as Information Renormalization. Available at
  21. Michael R Garey & David S Johnson (1983): Crossing number is NP-complete 4. SIAM, pp. 312–316, doi:10.1137/0604033.
  22. Vittorio Giovannetti, Seth Lloyd & Lorenzo Maccone (2008): Architectures for a quantum random access memory. Physical Review A 78(5), doi:10.1103/physreva.78.052310.
  23. Stefano Gogioso (2016): A Corpus-based Toy Model for DisCoCat. Electronic Proceedings in Theoretical Computer Science 221, pp. 2028, doi:10.4204/eptcs.221.3.
  24. E. Grefenstette & M. Sadrzadeh (2011): Experimental Support for a Categorical Compositional Distributional Model of Meaning. In: The 2014 Conference on Empirical Methods on Natural Language Processing., pp. 1394–1404. Available at
  25. Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow & Jay M. Gambetta (2019): Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), pp. 209212, doi:10.1038/s41586-019-0980-2.
  26. Matthew Honnibal & Mark Johnson (2015): An Improved Non-monotonic Transition System for Dependency Parsing. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Lisbon, Portugal, pp. 1373–1378, doi:10.18653/v1/D15-1162.
  27. Aravind K. Joshi: Mildly Context-Sensitive Grammars. Available at
  28. D. Kartsaklis & M. Sadrzadeh (2013): Prior disambiguation of word tensors for constructing Sentence vectors.. In: The 2013 Conference on Empirical Methods on Natural Language Processing.. ACL, pp. 1590–1601. Available at
  29. D. Kartsaklis & M. Sadrzadeh (2014): A Study of Entanglement in a Categorical Framework of Natural Language. In: Proceedings of the 11th Workshop on Quantum Physics and Logic (QPL), doi:10.4204/EPTCS.172.17.
  30. Joachim Lambek (2006): Pregroups and natural language processing. The mathematical intelligencer 28(2), pp. 41–48, doi:10.1007/BF02987155.
  31. Joachim Lambek (2008): From Word to Sentence: a computational algebraic approach to grammar. Polimetrica sas.
  32. M. Lewis (2019): Compositional Hyponymy with Positive Operators. In: Proceedings of Recent Advances in Natural Language Processing, Varna, Bulgaria, pp. 638–647. Available at 10.26615/978-954-452-056-4_075.
  33. Martha Lewis & Bob Coecke (2016): Harmonic Grammar in a DisCo Model of Meaning. Available at
  34. Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh Sadrzadeh & Matthew Purver (2014): Evaluating Neural Word Representations in Tensor-Based Compositional Settings. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), doi:10.3115/v1/d14-1079.
  35. Vasily Pestun & Yiannis Vlassopoulos (2017): Tensor network language model. Available at
  36. Anne Preller (2007): Linear Processing with Pregroups. Studia Logica: An International Journal for Symbolic Logic 87(2/3), pp. 171–197, doi:10.1007/s11225-007-9087-0.
  37. John Preskill (2018): Quantum Computing in the NISQ era and beyond. Quantum 2, pp. 79, doi:10.22331/q-2018-08-06-79.
  38. M. Sadrzadeh, S. Clark & B. Coecke (2013): The Frobenius anatomy of word meanings I: subject and object relative pronouns. Journal of Logic and Computation 23(6), pp. 12931317, doi:10.1093/logcom/ext044.
  39. Mehrnoosh Sadrzadeh, Stephen Clark & Bob Coecke (2014): The Frobenius anatomy of word meanings II: possessive relative pronouns. Journal of Logic and Computation 26(2), pp. 785815, doi:10.1093/logcom/exu027.
  40. Mehrnoosh Sadrzadeh, Dimitri Kartsaklis & Esma Balkir (2018): Sentence entailment in compositional distributional semantics. Annals of Mathematics and Artificial Intelligence 82(4), pp. 189–218, doi:10.1007/s10472-017-9570-x.
  41. Maria Schuld, Ilya Sinayskiy & Francesco Petruccione (2014): An introduction to quantum machine learning. Contemporary Physics 56(2), pp. 172185, doi:10.1080/00107514.2014.964942.
  42. Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington & Ross Duncan (2020): t|ket"526930B : A Retargetable Compiler for NISQ Devices.
  43. Luke Vilnis, Xiang Li, Shikhar Murty & Andrew McCallum (2018): Probabilistic Embedding of Knowledge Graphs with Box Lattice Measures. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), doi:10.18653/v1/p18-1025.
  44. Luke Vilnis & Andrew McCallum (2014): Word Representations via Gaussian Embedding.
  45. Nathan Wiebe, Alex Bocharov, Paul Smolensky, Matthias Troyer & Krysta M Svore (2019): Quantum Language Processing. Available at
  46. G. Wijnholds & M. Sadrzadeh (2019): Evaluating Composition Models for Verb Phrase Elliptical Sentence Embeddings. In: Proceedings of the 2019 Conference of the ACL. Association for Computational Linguistics, pp. 261–271, doi:10.18653/v1/N19-1023.
  47. Peter Wittek (2014): Quantum Machine Learning. Academic Press, doi:10.1016/B978-0-12-800953-6.00018-9.
  48. William Zeng & Bob Coecke (2016): Quantum Algorithms for Compositional Natural Language Processing. Electronic Proceedings in Theoretical Computer Science 221, pp. 6775, doi:10.4204/eptcs.221.8.

Comments and questions to:
For website issues: