1. Alastair A. Abbott, Christina Giarmatzi, Fabio Costa & Cyril Branciard (2016): Multipartite causal correlations: Polytopes and inequalities. Physical Review A 94(3), pp. 032131, doi:10.1103/PhysRevA.94.032131.
  2. John-Mark A. Allen (2014): Treating time travel quantum mechanically. Physical Review A 90(4), pp. 042107, doi:10.1103/PhysRevA.90.042107.
  3. John-Mark A. Allen, Jonathan Barrett, Dominic C. Horsman, Ciarán M. Lee & Robert W Spekkens (2017): Quantum Common Causes and Quantum Causal Models. Physical Review X 7(3), pp. 031021, doi:10.1103/PhysRevX.7.031021.
  4. Jonathan Barrett, Robin Lorenz & Ognyan Oreshkov (2019): Quantum Causal Models. preprint arXiv:1906.10726 [quant-ph]. Available at
  5. Jonathan Barrett, Robin Lorenz & Ognyan Oreshkov (2020): Cyclic Quantum Causal Models. preprint arXiv:2002.12157 [quant-ph]. Available at
  6. Ämin Baumeler (2017): Causal Loops: Logically Consistent Correlations, Time Travel, and Computation. PhD thesis. Università della Svizzera italiana. Available at
  7. Ämin Baumeler, Fabio Costa, Timothy C Ralph, Stefan Wolf & Magdalena Zych (2019): Reversible time travel with freedom of choice. Classical and Quantum Gravity 36(22), pp. 224002, doi:10.1088/1361-6382/ab4973.
  8. Ämin Baumeler, Adrien Feix & Stefan Wolf (2014): Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios. Physical Review A 90(4), pp. 042106, doi:10.1103/PhysRevA.90.042106.
  9. Ämin Baumeler & Stefan Wolf (2014): Perfect signaling among three parties violating predefined causal order. In: 2014 IEEE International Symposium on Information Theory. IEEE, Piscataway, pp. 526–530, doi:10.1109/ISIT.2014.6874888.
  10. Ämin Baumeler & Stefan Wolf (2016): Device-independent test of causal order and relations to fixed-points. New Journal of Physics 18(3), pp. 035014, doi:10.1088/1367-2630/18/3/035014.
  11. Ämin Baumeler & Stefan Wolf (2016): The space of logically consistent classical processes without causal order. New Journal of Physics 18(1), pp. 013036, doi:10.1088/1367-2630/18/1/013036.
  12. Ämin Baumeler & Stefan Wolf (2018): Computational tameness of classical non-causal models. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2209), pp. 20170698, doi:10.1098/rspa.2017.0698.
  13. Charles H Bennett & Benjamin Schumacher (2005): Simulated time travel, teleportation without communication, and how to conduct a romance with someone who has fallen into a black hole. Available at Talk at QUPON, 2005, Vienna, Austria.
  14. Cyril Branciard, Mateus Araújo, Adrien Feix, Fabio Costa & Časlav Brukner (2015): The simplest causal inequalities and their violation. New Journal of Physics 18(1), pp. 013008, doi:10.1088/1367-2630/18/1/013008.
  15. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2008): Quantum Circuit Architecture. Physical Review Letters 101(6), pp. 060401, doi:10.1103/PhysRevLett.101.060401.
  16. David Deutsch (1991): Quantum mechanics near closed timelike lines. Physical Review D 44(10), pp. 3197–3217, doi:10.1103/PhysRevD.44.3197.
  17. Fernando Echeverria, Gunnar Klinkhammer & Kip S Thorne (1991): Billiard balls in wormhole spacetimes with closed timelike curves: Classical theory. Physical Review D 44(4), pp. 1077–1099, doi:10.1103/PhysRevD.44.1077.
  18. Albert Einstein (1914): Die formale Grundlage der allgemeinen Relativitätstheorie. In: Georg Reimer: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Zweiter Halbband. Verlag der Königlichen Akademie der Wissenschaften, Berlin, pp. 1030–1085, doi:10.1002/3527608958.ch2.
  19. Albert Einstein (1998): To Constantin Carathéodory. In: Robert Schulmann, Anne J Kox, Michel Janssen & József Illy: The Collected Papers of Albert Einstein, chapter Document 255 8: The Berlin Years: Correspondence, 1914–1918: Part A: 1914–1917. Princeton University Press, pp. 334–335. Letter sent on September 6, 1916.
  20. Albert Einstein (1998): To Constantin Carathéodory. In: Robert Schulmann, Anne J Kox, Michel Janssen & József Illy: The Collected Papers of Albert Einstein, chapter Document 284 8: The Berlin Years: Correspondence, 1914–1918: Part A: 1914–1917. Princeton University Press, pp. 375–376. Letter sent on December 10, 1916.
  21. John Friedman, Michael S Morris, Igor Dmitriyevich Novikov, Fernando Echeverria, Gunnar Klinkhammer, Kip S Thorne & Ulvi Yurtsever (1990): Cauchy problem in spacetimes with closed timelike curves. Physical Review D 42(6), pp. 1915–1930, doi:10.1103/PhysRevD.42.1915.
  22. Kurt Gödel (1949): An example of a new type of cosmological solutions of Einstein's field equations of gravitation. Reviews of Modern Physics 21(3), pp. 447–450, doi:10.1103/RevModPhys.21.447.
  23. Kornel Lanczos (1924): Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie. Zeitschrift für Physik 21(1), pp. 73–110, doi:10.1007/BF01328251.
  24. Seth Lloyd, Lorenzo Maccone, Raul Garcia-Patron, Vittorio Giovannetti & Yutaka Shikano (2011): Quantum mechanics of time travel through post-selected teleportation. Physical Review D 84(2), pp. 025007, doi:10.1103/PhysRevD.84.025007.
  25. Chiara Marletto, Vlatko Vedral, Salvatore Virzì, Enrico Rebufello, Alessio Avella, Fabrizio Piacentini, Marco Gramegna, Ivo Pietro Degiovanni & Marco Genovese (2019): Theoretical description and experimental simulation of quantum entanglement near open time-like curves via pseudo-density operators. Nature Communications 10(1), pp. 182, doi:10.1038/s41467-018-08100-1.
  26. Igor Dmitriyevich Novikov (1989): An analysis of the operation of a time machine. Journal of Experimental and Theoretical Physics 68(3), pp. 439.
  27. Ognyan Oreshkov, Fabio Costa & Časlav Brukner (2012): Quantum correlations with no causal order. Nature Communications 3, pp. 1092, doi:10.1038/ncomms2076.
  28. Judea Pearl (2013): Causality. Cambridge University Press, doi:10.1017/CBO9780511803161.
  29. David T Pegg (2001): Quantum mechanics and the time travel paradox. In: D Mugnai, A Ranfagni & L S Schulman: Time's Arrows, Quantum Measurement and Superluminal Behavior. Consiglio Nazionale Delle Richerche, Roma, pp. 113.
  30. Felix A. Pollock, César Rodríguez-Rosario, Thomas Frauenheim, Mauro Paternostro & Kavan Modi (2018): Non-Markovian quantum processes: Complete framework and efficient characterization. Physical Review A 97(1), pp. 012127, doi:10.1103/PhysRevA.97.012127.
  31. Chris Smeenk & Christian Wüthrich (2011): Time travel and time machines. In: Craig Callender: The Oxford Handbook of Philosophy of Time, chapter 20. Oxford University Press, Oxford, pp. 39, doi:10.1093/oxfordhb/9780199298204.001.0001.
  32. Willem Jacob van Stockum (1938): The gravitational field of a distribution of particles rotating about an axis of symmetry. Proceedings of the Royal Society of Edinburgh 57(1938), pp. 135–154, doi:10.1017/S0370164600013699.
  33. George Svetlichny (2009): Effective quantum time travel. preprint arXiv:0902.4898 [quant-ph]. Available at
  34. George Svetlichny (2011): Time travel: Deutsch vs. teleportation. International Journal of Theoretical Physics 50(12), pp. 3903–3914, doi:10.1007/s10773-011-0973-x.
  35. Germain Tobar & Fabio Costa (2020): Reversible dynamics with closed time-like curves and freedom of choice. Classical and Quantum Gravity 37(20), pp. 205011, doi:10.1088/1361-6382/aba4bc.

Comments and questions to:
For website issues: