1. Matthew Amy (2018): Towards Large-scale Functional Verification of Universal Quantum Circuits. In: Proceedings of QPL 2018, pp. 1–21, doi:10.4204/EPTCS.287.1. [arXiv:1901.09476]; see also []..
  2. Matthew Amy, Jianxin Chen & Neil J. Ross (2018): A Finite Presentation of CNOT-Dihedral Operators. Electronic Proceedings in Theoretical Computer Science 266, pp. 84–97, doi:10.1007/978-3-642-12821-9_4. [arXiv:1701.00140].
  3. Matthew Amy, Dmitri Maslov & Michele Mosca (2014): Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33(10), pp. 1476–1489, doi:10.1109/TCAD.2014.2341953. [arXiv:1303.2042].
  4. Matthew Amy, Dmitri Maslov, Michele Mosca & Martin Roetteler (2013): A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(6), pp. 818–830, doi:10.1109/TCAD.2013.2244643. [arXiv:1206.0758].
  5. Matthew Amy & Michele Mosca (2019): T-count optimization and Reed-Muller codes. IEEE Transactions on Information Theory 65(8), pp. 4771–4784, doi:10.1109/TIT.2019.2906374. [arXiv:1601.07363].
  6. Earl T. Campbell & Mark Howard (2017): A unified framework for magic state distillation and multi-qubit gate-synthesis with reduced resource cost. Physical Review A 95, pp. 022316, doi:10.1103/PhysRevA.86.022316. [arXiv:1606.01904].
  7. Ross Duncan & Simon Perdrix (2010): Rewriting Measurement-Based Quantum Computations with Generalised Flow. In: Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide & Paul G. Spirakis: Automata, Languages and Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 285–296, doi:10.1007/s10472-009-9141-x.
  8. Craig Gidney (2018): Halving the cost of quantum addition. Quantum 2, pp. 74, doi:10.1007/s11128-011-0297-z. [arXiv:1709.06648].
  9. David Gosset, Vadym Kliuchnikov, Michele Mosca & Vincent Russo (2014): An Algorithm for the T-count. Quantum Info. Comput. 14(15-16), pp. 1261–1276. Available at [arXiv:1308.4134].
  10. Luke E. Heyfron & Earl T. Campbell (2018): An efficient quantum compiler that reduces T count. Quantum Science and Technology 4(1), pp. 015004, doi:10.1038/srep01939. [arXiv:1712.01557].
  11. Cody Jones (2013): Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87, pp. 022328, doi:10.1103/PhysRevA.87.022328. Available at [arXiv:1212.5069].
  12. Aleks Kissinger & John van de Wetering (2019): Reducing T-count with the ZX-calculus. [arXiv:1903.10477].
  13. Daniel Litinski (2019): A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery. Quantum 3, pp. 128, doi:10.1103/PhysRevB.96.205413. [arXiv:1808.02892].
  14. Dmitri Maslov & Martin Roetteler (2018): Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations. IEEE Transactions on Information Theory 64, pp. 4729–4738, doi:10.1109/TIT.2018.2825602. [arXiv:1705.09176].
  15. Giulia Meuli, Mathias Soeken, Earl Campbell, Martin Roetteler & Giovanni De Micheli (2019): The Role of Multiplicative Complexity in Compiling Low T-count Oracle Circuits. [arXiv:1908.01609].
  16. Peter Selinger: Quipper.
  17. Fang Zhang & Jianxin Chen (2019): Optimizing T gates in Clifford+T circuit as π/4 rotations around Paulis. [arXiv:1903.12456].

Comments and questions to:
For website issues: