1. Samson Abramsky & Achim Jung (1995): Domain Theory. In: Samson Abramsky, Dov M. Gabbay & Thomas S. E. Maibaum: Handbook of Logic in Computer Science, volume 3. Oxford University Press.
  2. Stefan Banach (1932): Théorie des Opérations Linéaires. Monografie Matematyczne 1. Instytut Matematyczny Polskiej Akademii Nauk.
  3. Howard Barnum, Jonathan Barrett, Lisa Orloff Clark, Matthew Leifer, Robert Spekkens, Nicholas Stepanik, Alex Wilce & Robin Wilke (2010): Entropy and information causality in general probabilistic theories. New Journal of Physics 12(3), pp. 033024, doi:10.1088/1367-2630/12/3/033024.
  4. Jonathan Barrett (2007): Information Processing in Generalized Probabilistic Theories. Physical Review A 75, pp. 032304, doi:10.1103/PhysRevA.75.032304.
  5. Francis Borceux (1994): Handbook of Categorical Algebra. Encyclopedia of Mathematics and Its Applications 50, 51 and 52. Cambridge University Press, doi:10.1017/CBO9780511525858.
  6. Nelson Dunford & Jacob T. Schwartz (1957): Linear Operators, Part 1: General Theory. Pure and Applied Mathematics VII. Interscience Publishers.
  7. Yuri L. Ershov (1973): The Theory of A-spaces. Algebra and Logic 12(4), pp. 209–232, doi:10.1007/BF02218570.
  8. Robert Furber (2017): Categorical Duality in Probability and Quantum Foundations. Radboud Universiteit Nijmegen. Link available at
  9. Robert Furber (2019): Categorical Equivalences from State-Effect Adjunctions. In: Peter Selinger & Giulio Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, pp. 107–126, doi:10.4204/EPTCS.287.6.
  10. David Gross, Markus Müller, Roger Colbeck & Oscar C. O. Dahlsten (2010): All Reversible Dynamics in Maximally Nonlocal Theories are Trivial. Physical Review Letters 104, pp. 080402, doi:10.1103/PhysRevLett.104.080402.
  11. Stanley Gudder (1973): Convex Structures and Operational Quantum Mechanics. Communications in Mathematical Physics 29(3), pp. 249–264, doi:10.1007/BF01645250.
  12. Stanley Gudder & Sylvia Pulmannová (1998): Representation Theorem for Convex Effect Algebras. Commentationes Mathematicae Universitatis Carolinae 39(4), pp. 645 – 659.
  13. Harald Hanche-Olsen & Erling Størmer (1984): Jordan Operator Algebras. Pitman Publishing.
  14. Lucien Hardy (2007): Towards Quantum Gravity: A Framework for Probabilistic Theories with Non-fixed Causal Structure. Journal of Physics A: Mathematical and Theoretical 40(12), pp. 3081–3099, doi:10.1088/1751-8113/40/12/s12.
  15. Bart Jacobs (2010): Convexity, Duality and Effects. In: Cristian S. Calude & Vladimiro Sassone: Theoretical Computer Science, IFIP Advances in Information and Communication Technology 323. Springer Berlin Heidelberg, pp. 1–19, doi:10.1007/978-3-642-15240-5_1.
  16. Bart Jacobs & Jorik Mandemaker (2012): The Expectation Monad in Quantum Foundations. In: Bart Jacobs, Peter Selinger & Bas Spitters: Quantum Physics and Logic (QPL) 2011, Electronic Proceedings in Theoretical Computer Science 95, pp. 143–182, doi:10.4204/EPTCS.95.12.
  17. Bill B. Johnson & Joram Lindenstrauss (2001): Handbook of the Geometry of Banach Spaces. North-Holland.
  18. Pascual Jordan, John von Neumann & Eugene Wigner (1934): On an Algebraic Generalization of the Quantum Mechanical Formalism. Annals of Mathematics 35(1), pp. 29–64, doi:10.2307/1968117.
  19. Richard V. Kadison (1956): Operator Algebras with a Faithful Weakly-Closed Representation. Annals of Mathematics 64(1), pp. 175–181, doi:10.2307/1969954.
  20. Saunders Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer Verlag, doi:10.1007/978-1-4612-9839-7.
  21. Walter D. Neumann (1970): On the Quasivariety of Convex Subsets of Affine Spaces. Archiv der Mathematik 21(1), pp. 11–16, doi:10.1007/BF01220869.
  22. Masanao Ozawa (1980): Optimal Measurements for General Quantum Systems. Reports on Mathematical Physics 18, pp. 11–28, doi:10.1016/0034-4877(80)90036-1.
  23. Gordon Plotkin (1983): Domains (Pisa Notes).
  24. Mathys Rennela (2013): Operator Algebras in Quantum Computation. Université Paris 7 Diderot.
  25. Shôichirô Sakai (1971): C^*-algebras and W^*-algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete 60. Springer.
  26. Helmut H. Schaefer (1966): Topological Vector Spaces. Graduate Texts in Mathematics 3. Springer Verlag.
  27. Dana Scott (1972): Continuous Lattices. In: F. William Lawvere: Toposes, Algebraic Geometry and Logic. Springer Berlin Heidelberg, pp. 97–136, doi:10.1007/BFb0073967.
  28. Marshall H. Stone (1949): Postulates for the Barycentric Calculus. Annali di Matematica Pura ed Applicata 29(1), pp. 25–30, doi:10.1007/BF02413910.
  29. Tadeusz \'Swirszcz (1975): Monadic Functors and Categories of Convex Sets. Institute of Mathematics of the Polish Academy of Sciences, Preprint 70.
  30. Masamichi Takesaki (1979): Theory of Operator Algebra 1. Springer Verlag, doi:10.1007/978-1-4612-6188-9.
  31. David M. Topping (1966): An Isomorphism Invariant for Spin Factors. Journal of Mathematics and Mechanics 15(6), pp. 1055–1063.
  32. Greg Ver Steeg & Stephanie Wehner (2009): Relaxed Uncertainty Relations and Information Processing. Quantum Information and Computation 9, pp. 0801–0832.

Comments and questions to:
For website issues: