1. Samson Abramsky, Rui Soares Barbosa, Nadish de Silva & Octavio Zapata (2017): The Quantum Monad on Relational Structures. In: LIPIcs-Leibniz International Proceedings in Informatics 83. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, doi:10.4230/LIPIcs.MFCS.2017.35.
  2. Albert Atserias, Laura Mančinska, David E Roberson, Robert Šámal, Simone Severini & Antonios Varvitsiotis (2018): Quantum and non-signalling graph isomorphisms. Journal of Combinatorial Theory, Series B, doi:10.1016/j.jctb.2018.11.002.
  3. Peter J Cameron, Ashley Montanaro, Michael W Newman, Simone Severini & Andreas Winter (2007): On the quantum chromatic number of a graph. The electronic journal of combinatorics 14(1), pp. 81. Available at
  4. Mou-Hsiung Chang (2015): Quantum Stochastics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, doi:10.1017/CBO9781107706545.
  5. Kenta Cho, Bart Jacobs, Bas Westerbaan & Abraham Westerbaan (2015): An introduction to effectus theory. arXiv preprint. Available at
  6. Richard Cleve & Rajat Mittal (2014): Characterization of binary constraint system games. In: International Colloquium on Automata, Languages, and Programming. Springer, pp. 320–331, doi:10.1007/978-3-662-43948-7.
  7. Michele Giry (1982): A categorical approach to probability theory. In: Categorical aspects of topology and analysis. Springer, pp. 68–85, doi:10.1007/BFb0092872.
  8. Teiko Heinosaari & Mário Ziman (2011): The mathematical language of quantum theory: from uncertainty to entanglement. Cambridge University Press, doi:10.1017/CBO9781139031103.
  9. Bart Jacobs (2011): Probabilities, distribution monads, and convex categories. Theoretical Computer Science 412(28), pp. 3323–3336, doi:10.1016/j.tcs.2011.04.005.
  10. Bart Jacobs (2015): New directions in categorical logic, for classical, probabilistic and quantum logic. Logical Methods in Computer Science (LMCS) 11(3), doi:10.2168/LMCS-11(3:24)2015.
  11. Laura Mančinska & David E Roberson (2016): Quantum homomorphisms. Journal of Combinatorial Theory, Series B 118, pp. 228–267, doi:10.1016/j.jctb.2015.12.009.
  12. Stefan Milius, Dirk Pattinson & Lutz Schröder (2015): Generic trace semantics and graded monads. In: LIPIcs-Leibniz International Proceedings in Informatics 35. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, doi:10.4230/LIPIcs.CALCO.2015.253.
  13. David E Roberson: Variations on a theme: Graph homomorphisms. PhD's thesis, University of Waterloo, 2013.. Available at

Comments and questions to:
For website issues: