1. Miriam Backens & Aleks Kissinger (2019): ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity. Electronic Proceedings in Theoretical Computer Science 287, pp. 2342, doi:10.4204/eptcs.287.2.
  2. Niel de Beaudrap & Dominic Horsman (2020): The ZX calculus is a language for surface code lattice surgery. Quantum 4, pp. 218, doi:10.22331/q-2020-01-09-218.
  3. B. Coecke & A. Kissinger (2017): Picturing Quantum Processes. Cambridge University Press, doi:10.1017/9781316219317.
  4. Bob Coecke & Ross Duncan (2008): Automata, Languages and Programming: 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II, chapter Interacting Quantum Observables, pp. 298–310. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-540-70583-3_25.
  5. Craig Gidney & Austin G. Fowler (2019): Efficient magic state factories with a catalyzed |CCZ"526930B to 2|T"526930B transformation. Quantum 3, pp. 135, doi:10.22331/q-2019-04-30-135.
  6. Amar Hadzihasanovic (2015): A Diagrammatic Axiomatisation for Qubit Entanglement. 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, doi:10.1109/lics.2015.59.
  7. Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics. Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS 18, doi:10.1145/3209108.3209139.
  8. Aleks Kissinger, Alex Merry & Matvey Soloviev (2014): Pattern graph rewrite systems 143. Open Publishing Association, pp. 5466, doi:10.4204/eptcs.143.5.
  9. Aleks Kissinger & Vladimir Zamdzhiev (2015): Quantomatic: A Proof Assistant for Diagrammatic Reasoning. Lecture Notes in Computer Science, pp. 326336, doi:10.1007/978-3-319-21401-6_22.
  10. Saunders MacLane (1965): Categorical algebra. Bull. Amer. Math. Soc. 71(1), pp. 40–106, doi:10.1090/S0002-9904-1965-11234-4. Available at
  11. Thomas Sauer Mariano Gasca (2000): On the history of multivariate polynomial interpolation.. Journal of Computational and Applied Mathematics 122, pp. 23–35, doi:10.1016/S0377-0427(00)00353-8. Available at
  12. Alexander Merry (2014): Reasoning with !-Graphs. University of Oxford. Available at
  13. K. F. Ng & Q. Wang (2017): A universal completion of the ZX-calculus. ArXiv e-prints 1706.09877.
  14. Renaud Vilmart (2019): A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics. 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), doi:10.1109/lics.2019.8785765.
  15. Eric W. Weisstein: Laurent Polynomial.. Available at From MathWorld–A Wolfram Web Resource..

Comments and questions to:
For website issues: