1. S. Abramsky & N. Tzevelekos (2011): Introduction to Categories and Categorical Logic, pp. 3–94. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-12821-9_1.
  2. Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal & Shane Mansfield (2015): Contextuality, cohomology and paradox. In: Stephan Kreutzer: 24th EACSL Annual Conference on Computer Science Logic (CSL 2015), Leibniz International Proceedings in Informatics (LIPIcs) 41. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 211–228, doi:10.4230/LIPIcs.CSL.2015.211.
  3. Samson Abramsky & Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics 13:113036, doi:10.1088/1367-2630/13/11/113036.
  4. Samson Abramsky, Shane Mansfield & Rui Soares Barbosa (2012): The cohomology of non-locality and contextuality. In: Bart Jacobs, Peter Selinger & Bas Spitters: Proceedings 8th International Workshop on Quantum Physics and Logic, Nijmegen, Netherlands, October 27–29, 2011, Electronic Proceedings in Theoretical Computer Science 95. Open Publishing Association, pp. 1–14, doi:10.4204/EPTCS.95.1. Eprint available at arXiv:1111.3620 [quant-ph].
  5. J. S. Bell (1964): On the Einstein Podolsky Rosen paradox. Physics 1, pp. 195–200, doi:10.1103/PhysicsPhysiqueFizika.1.195.
  6. K. Brown: Cohomology of groups. Graduate Texts in Mathematics, 87, doi:10.1007/978-1-4684-9327-6.
  7. Giovanni Carù (2017): On the Cohomology of Contextuality. arXiv e-prints arXiv:1701.00656, doi:10.4204/EPTCS.236.2.
  8. Giovanni Carù (2018): Towards a complete cohomology invariant for non-locality and contextuality. arXiv e-prints arXiv:1807.04203.
  9. Daniel M. Greenberger, Michael A. Horne, Abner Shimony & Anton Zeilinger (1990): Bell's theorem without inequalities. American Journal of Physics 58(12), pp. 1131–1143, doi:10.1119/1.16243.
  10. L. Hardy (1993): Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, doi:10.1103/PhysRevLett.71.1665.
  11. Mark Howard, Joel Wallman, Victor Veitch & Joseph Emerson (2014): Contextuality supplies the ‘magic’ for quantum computation. Nature 510(7505), pp. 351, doi:10.1038/nature13460.
  12. Simon Kochen & E. P. Specker (1975): The Problem of Hidden Variables in Quantum Mechanics, pp. 293–328. Springer Netherlands, Dordrecht, doi:10.1007/978-94-010-1795-4_17.
  13. N. David Mermin (1990): Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, pp. 3373–3376, doi:10.1103/PhysRevLett.65.3373.
  14. N. David Mermin (1993): Hidden variables and the two theorems of John Bell. Reviews of Modern Physics 65, pp. 803–815, doi:10.1103/RevModPhys.65.803.
  15. Cihan Okay, Sam Roberts, Stephen D. Bartlett & Robert Raussendorf (2017): Topological proofs of contextuality in quantum mechanics. arXiv e-prints arXiv:1701.01888.
  16. Robert Raussendorf (2009): Contextuality in Measurement-based Quantum Computation. arXiv e-prints arXiv:0907.5449, doi:10.1103/PhysRevA.88.022322.
  17. Robert Raussendorf, Daniel E. Browne & Hans J. Briegel (2003): Measurement-based quantum computation on cluster states. Physical Review A 68:022312, doi:10.1103/PhysRevA.68.022312.
  18. Frank Roumen (2016): Cohomology of Effect Algebras. arXiv e-prints arXiv:1602.00567, doi:10.4204/EPTCS.236.12.
  19. Sam Staton & Sander Uijlen (2015): Effect Algebras, Presheaves, Non-locality and Contextuality. In: Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi & Bettina Speckmann: Automata, Languages, and Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 401–413, doi:10.1007/s10701-012-9654-8.
  20. Peter J. Webb: An Introduction to the Cohomology of Groups. Available at
  21. Charles A. Weibel (1994): An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, doi:10.1017/CBO9781139644136.

Comments and questions to:
For website issues: