1. Matthew Amy, Jianxin Chen & Neil J. Ross (2018): A Finite Presentation of CNOT-Dihedral Operators. Electronic Proceedings in Theoretical Computer Science 266, pp. 84–97, doi:10.4204/eptcs.266.5.
  2. Matthew Amy, Dmitri Maslov & Michele Mosca (2014): Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33(10), pp. 1476–1489, doi:10.1109/TCAD.2014.2341953.
  3. Matthew Amy, Dmitri Maslov, Michele Mosca & Martin Roetteler (2013): A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(6), pp. 818–830, doi:10.1109/tcad.2013.2244643.
  4. Matthew Amy & Michele Mosca (2019): T-Count Optimization and Reed-Muller Codes. IEEE Transactions on Information Theory 65(8), pp. 4771–4784, doi:10.1109/tit.2019.2906374.
  5. Panagiotis Kl Barkoutsos, Jerome F Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J Egger, Matthias Troyer & Antonio Mezzacapo (2018): Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions. Physical Review A 98(2), pp. 022322, doi:10.1103/PhysRevA.98.022322.
  6. Rodney J Bartlett, Stanislaw A Kucharski & Jozef Noga (1989): Alternative coupled-cluster ansätze II. The unitary coupled-cluster method. Chemical physics letters 155(1), pp. 133–140, doi:10.1016/S0009-2614(89)87372-5.
  7. Niel de Beaudrap & Dominic Horsman (2017): The ZX calculus is a language for surface code lattice surgery. In: Proc. QPL2017. Available at
  8. Michael Beverland, Earl Campbell, Mark Howard & Vadym Kliuchnikov (2019): Lower bounds on the non-Clifford resources for quantum computations. arXiv preprint 1904.01124.
  9. M Blaauboer & RL De Visser (2008): An analytical decomposition protocol for optimal implementation of two-qubit entangling gates. Journal of Physics A: Mathematical and Theoretical 41(39), pp. 395307, doi:10.1088/1751-8113/41/39/395307.
  10. Sergey Bravyi, Jay M Gambetta, Antonio Mezzacapo & Kristan Temme (2017): Tapering off qubits to simulate fermionic Hamiltonians. arXiv preprint 1701.08213.
  11. Sergey B Bravyi & Alexei Yu Kitaev (2002): Fermionic quantum computation. Annals of Physics 298(1), pp. 210–226, doi:10.1006/aphy.2002.6254.
  12. Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis & Alán Aspuru-Guzik (2018): Quantum Chemistry in the Age of Quantum Computing. arXiv preprint 1812.09976.
  13. Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Diagrammatics. New J. Phys 13(043016), doi:10.1088/1367-2630/13/4/043016.
  14. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.
  15. Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons & Seyon Sivarajah (2019): On the Qubit Routing Problem. In: Wim van Dam & Laura Mancinska: 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019), Leibniz International Proceedings in Informatics (LIPIcs) 135. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 5:1–5:32, doi:10.4230/LIPIcs.TQC.2019.5.
  16. Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2019): Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus. arXiv preprint 1902.03178.
  17. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. Springer Berlin Heidelberg, doi:10.1007/3-540-31188-2.
  18. Andrew Fagan & Ross Duncan (2019): Optimising Clifford Circuits with Quantomatic. arXiv preprint 1901.10114, doi:10.4204/eptcs.287.5.
  19. Luke E Heyfron & Earl T Campbell (2018): An efficient quantum compiler that reduces T count. Quantum Science and Technology 4(1), pp. 015004, doi:10.1088/2058-9565/aad604.
  20. IBM Research: Qiskit. Available at
  21. Pascual Jordan & Eugene P Wigner (1928): About the Pauli exclusion principle. Z. Phys. 47, pp. 631–651, doi:10.1007/BF01331938.
  22. Aleks Kissinger & Arianne Meijer-van de Griend (2019): CNOT circuit extraction for topologically-constrained quantum memories. arXiv preprint 1904.00633.
  23. Aleks Kissinger & John van de Wetering (2019): Reducing T-count with the ZX-calculus. arXiv preprint 1903.10477.
  24. Daniel Litinski (2019): A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery. Quantum 3, pp. 128, doi:10.22331/q-2019-03-05-128.
  25. Jarrod R McClean, Jonathan Romero, Ryan Babbush & Alán Aspuru-Guzik (2016): The theory of variational hybrid quantum-classical algorithms. New Journal of Physics 18(2), pp. 023023, doi:10.1088/1367-2630/18/2/023023. Available at
  26. Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs & Dmitri Maslov (2018): Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information 4(1), pp. 23, doi:10.1038/s41534-018-0072-4.
  27. Beatrice Nash, Vlad Gheorghiu & Michele Mosca (2019): Quantum circuit optimizations for NISQ architectures. arXiv preprint 1904.01972.
  28. Rigetti Computing: Forest - Rigetti. Available at
  29. Peter Selinger (2015): Generators and relations for n-qubit Clifford operators. Logical Methods in Computer Science 11(2), doi:10.2168/lmcs-11(2:10)2015.
  30. The Cirq Developers: Cirq: A python library for NISQ circuits. Available at
  31. Guifre Vidal & Christopher M Dawson (2004): Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Physical Review A 69(1), pp. 010301, doi:10.1103/PhysRevA.69.010301.
  32. Renaud Vilmart (2018): A Near-Optimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics. arXiv preprint 1812.09114.

Comments and questions to:
For website issues: