1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Logic in Computer Science 19. IEEE Computer Society, pp. 415–425, doi:10.1109/lics.2004.1319636.
  2. Howard Barnum, Ross Duncan & Alexander Wilce (2013): Symmetry, compact closure and dagger compactness for categories of convex operational models. Journal of philosophical logic 42(3), pp. 501–523, doi:10.1007/s10992-013-9280-8.
  3. J. Barrett (2007): Information processing in generalized probabilistic theories. Physical Review A - Atomic, Molecular, and Optical Physics 75(3), doi:10.1103/PhysRevA.75.032304.
  4. A. Carboni & R. Walters (1987): Cartesian bicategories I. Journal of pure and applied algebra 49(1-2), pp. 11–32, doi:10.1016/0022-4049(87)90121-6.
  5. G. Chiribella (2014): Distinguishability and copiability of programs in general process theories. arXiv:1411.3035.
  6. G. Chiribella, G. M. D'Ariano & P. Perinotti (2010): Probabilistic theories with purification. Physical Review A 81(6), pp. 62348, doi:10.1103/physreva.81.062348.
  7. G. Chiribella, G. M. D'Ariano & P. Perinotti (2011): Informational derivation of quantum theory. Phys. Rev. A 84(1), pp. 12311, doi:10.1103/PhysRevA.84.012311.
  8. B. Coecke (2008): Axiomatic description of mixed states from Selinger's CPM-construction. Electronic Notes in Theoretical Computer Science 210, pp. 3–13, doi:10.1016/j.entcs.2008.04.014.
  9. B. Coecke & E. Paquette (2011): Categories for the practising physicist. In: New Structures for Physics. Springer Berlin Heidelberg, pp. 173–286, doi:10.1007/978-3-642-12821-9_3.
  10. O. Cunningham & C. Heunen (2018): Purity through Factorisation. In: Proceedings of the 14th International Conference on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 266, pp. 315–328, doi:10.4204/EPTCS.266.20.
  11. L. Hardy (2011): Reformulating and Reconstructing Quantum Theory. arXiv:1104.2066.
  12. L. Hardy & W. Wootters (2012): Limited Holism and Real-Vector-Space Quantum Theory. Foundations of Physics 42(3), pp. 454–473, doi:10.1007/s10701-011-9616-6.
  13. C. Heunen & S. Tull (2015): Categories of relations as models of quantum theory. In: Proceedings of the 12th International Workshop on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 195, pp. 247–261, doi:10.4204/EPTCS.195.18.
  14. J. H. Selby, C. M. Scandolo & B. Coecke (2018): Reconstructing quantum theory from diagrammatic postulates. arXiv:1802.00367.
  15. John Selby & Bob Coecke (2016): Process-theoretic characterisation of the Hermitian adjoint. arXiv preprint arXiv:1606.05086.
  16. P. Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract). Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  17. P. Selinger (2011): A survey of graphical languages for monoidal categories. In: New structures for physics. Springer, pp. 289–355.
  18. Peter Selinger (2012): Finite dimensional Hilbert spaces are complete for dagger compact closed categories. arXiv preprint arXiv:1207.6972.
  19. S. Tull (2018): Categorical Operational Physics. DPhil Thesis.. arXiv:1902.00343.
  20. S. Tull (2019): A Categorical Reconstruction of Quantum Theory. Logical Methods in Computer Science.
  21. B. Westerbaan (2018): Dagger and dilations in the category of von Neumann algebras. PhD Thesis. arXiv:1803.01911.

Comments and questions to:
For website issues: