References

  1. Erik M. Alfsen (1971): Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, doi:10.1007/978-3-642-65009-3.
  2. Erik M. Alfsen & Frederic W. Shultz (2001): State Spaces of Operator Algebras. Birkhäuser, doi:10.1007/978-1-4612-0147-2.
  3. Leonard Asimow & Alan J. Ellis (1980): Convexity Theory and its Applications in Functional Analysis. L.M.S. Monographs 16. Academic Press.
  4. Howard Barnum, Jonathan Barrett, Lisa Orloff Clark, Matthew Leifer, Robert Spekkens, Nicholas Stepanik, Alex Wilce & Robin Wilke (2010): Entropy and information causality in general probabilistic theories. New Journal of Physics 12(3), pp. 033024, doi:10.1088/1367-2630/12/3/033024.
  5. Howard Barnum & Alexander Wilce (2009): Ordered Linear Spaces and Categories as Frameworks for Information-Processing Characterizations of Quantum and Classical Theory. http://arxiv.org/abs/0908.2354.
  6. Jonathan Barrett (2007): Information Processing in Generalized Probabilistic Theories. Physical Review A 75, pp. 032304, doi:10.1103/PhysRevA.75.032304.
  7. Enrico G. Beltrametti & Sławomir Bugajski (1997): Effect Algebras and Statistical Physical Theories. Journal of Mathematical Physics 38(6), pp. 3020–3030, doi:10.1063/1.532031.
  8. Nicolas Bourbaki (1998): General Topology. Ettore Majorana International Science. Springer.
  9. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2010): Probabilistic Theories with Purification. Physical Review A 81, pp. 062348, doi:10.1103/PhysRevA.81.062348.
  10. E. Brian Davies & John T. Lewis (1970): An Operational Approach to Quantum Probability. Comm. Math. Phys. 17(3), pp. 239–260, doi:10.1007/BF01647093. Available at http://projecteuclid.org/euclid.cmp/1103842336.
  11. Anatolij Dvurečenskij & Sylvia Pulmannová (2000): New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, doi:10.1007/978-94-017-2422-7.
  12. Christopher M. Edwards (1970): The Operational Approach to Algebraic Quantum Theory I. Communications in Mathematical Physics 16(3), pp. 207–230, doi:10.1007/BF01646788.
  13. Alan J. Ellis (1964): The Duality of Partially Ordered Normed Linear Spaces. Journal of the London Mathematical Society s1-39(1), pp. 730–744, doi:10.1112/jlms/s1-39.1.730. Available at http://jlms.oxfordjournals.org/content/s1-39/1/730.short.
  14. David J. Foulis & Mary K. Bennett (1994): Effect Algebras and Unsharp Quantum Logics. Foundations of Physics 24(10), pp. 1331–1352, doi:10.1007/BF02283036.
  15. Tobias Fritz (2009): Convex Spaces I: Definition and Examples. https://arxiv.org/abs/0903.5522.
  16. Robert Furber (2017): Categorical Duality in Probability and Quantum Foundations. Radboud Universiteit Nijmegen. Link available at http://www.robertfurber.com.
  17. Stanley Gudder (1973): Convex Structures and Operational Quantum Mechanics. Communications in Mathematical Physics 29(3), pp. 249–264, doi:10.1007/BF01645250.
  18. Stanley Gudder & Sylvia Pulmannová (1998): Representation Theorem for Convex Effect Algebras. Commentationes Mathematicae Universitatis Carolinae 39(4), pp. 645 – 659.
  19. Harald Hanche-Olsen & Erling Størmer (1984): Jordan Operator Algebras. Pitman Publishing.
  20. Bart Jacobs (2010): Convexity, Duality and Effects. In: Cristian S. Calude & Vladimiro Sassone: Theoretical Computer Science, IFIP Advances in Information and Communication Technology 323. Springer Berlin Heidelberg, pp. 1–19, doi:10.1007/978-3-642-15240-5_1.
  21. Bart Jacobs & Jorik Mandemaker (2012): The Expectation Monad in Quantum Foundations. In: Bart Jacobs, Peter Selinger & Bas Spitters: Quantum Physics and Logic (QPL) 2011, Electronic Proceedings in Theoretical Computer Science 95, pp. 143–182, doi:10.4204/EPTCS.95.12.
  22. Graham Jameson (1970): Ordered Linear Spaces. Lecture Notes in Mathematics 141. Springer, doi:10.1007/BFb0059130.
  23. Peter Johnstone (1982): Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press.
  24. Pascual Jordan, John von Neumann & Eugene Wigner (1934): On an Algebraic Generalization of the Quantum Mechanical Formalism. Annals of Mathematics 35(1), pp. 29–64, doi:10.2307/1968117.
  25. Joachim Lambek & Philip Scott (1986): Introduction to Higher Order Categorical Logic. Cambridge Studies in Advanced Mathematics 7. Cambridge University Press.
  26. Saunders Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer Verlag, doi:10.1007/978-1-4612-9839-7.
  27. Walter D. Neumann (1970): On the Quasivariety of Convex Subsets of Affine Spaces. Archiv der Mathematik 21(1), pp. 11–16, doi:10.1007/BF01220869.
  28. Masanao Ozawa (1980): Optimal Measurements for General Quantum Systems. Reports on Mathematical Physics 18, pp. 11–28, doi:10.1016/0034-4877(80)90036-1.
  29. Dieter Pumplün (2002): The Metric Completion of Convex Sets and Modules. Results in Mathematics 41(3-4), pp. 346–360, doi:10.1007/BF03322777.
  30. Frank Roumen (2017): Effect Algebroids. Radboud Universiteit Nijmegen.
  31. Helmut H. Schaefer (1966): Topological Vector Spaces. Graduate Texts in Mathematics 3. Springer Verlag.
  32. Frederic W. Shultz (1974): A Characterization of State Spaces of Orthomodular Lattices. Journal of Combinatorial Theory, Series A 17(3), pp. 317 – 328, doi:10.1016/0097-3165(74)90096-X.
  33. Marshall H. Stone (1949): Postulates for the Barycentric Calculus. Annali di Matematica Pura ed Applicata 29(1), pp. 25–30, doi:10.1007/BF02413910.
  34. Tadeusz \'Swirszcz (1975): Monadic Functors and Categories of Convex Sets. Institute of Mathematics of the Polish Academy of Sciences, Preprint 70.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org