1. The Jython Project : Python for the Java Platform. Available at
  2. S. Aaronson & D Gottesman (2004): Improved Simulation of Stabilizer Circuits. Phys. Rev. A 70(052328), doi:10.1103/PhysRevA.70.052328.
  3. Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics 16(9), pp. 093021, doi:10.1088/1367-2630/16/9/093021.
  4. Miriam Backens (2015): Making the stabilizer ZX-calculus complete for scalars. In: Chris Heunen, Peter Selinger & Jamie Vicary: Proceedings of the 12th International Workshop on Quantum Physics and Logic (QPL 2015), Electronic Proceedings in Theoretical Computer Science 195, pp. 17–32, doi:10.4204/EPTCS.195.2.
  5. Miriam Backens, Simon Perdrix & Quanlong Wang (2016): A Simplified Stabilizer ZX-calculus. In: R. Duncan & C. Heunen: Proceedings 13th International Conference on Quantum Physics and Logic (QPL 2016), Electronic Proceedings in Theoretical Computer Science 236, pp. 1–20, doi:10.4204/EPTCS.236.1.
  6. Nicholas Chancellor, Aleks Kissinger, Stefan Zohren & Dominic Horsman (2016): Coherent Parity Check Construction for Quantum Error Correction. preprint arXiv:1611.08012.
  7. Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Diagrammatics. New J. Phys 13(043016), doi:10.1088/1367-2630/13/4/043016.
  8. Bob Coecke, Ross Duncan, Aleks Kissinger & Quanlong Wang (2015): Generalised Compositional Theories and Diagrammatic Reasoning. In: G. Chiribella & R. Spekkens: Quantum Theory: Informational Foundations and Foils. Springer, doi:10.1007/978-94-017-7303-4_10.
  9. V. Danos & E. Kashefi (2006): Determinism in the one-way model. Phys. Rev. A 74(052310), doi:10.1103/PhysRevA.74.052310.
  10. Ross Duncan & Kevin Dunne (2016): Interacting Frobenius Algebras are Hopf. In: Martin Grohe, Eric Koskinen & Natarajan Shankar: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, LICS '16. ACM, pp. 535–544, doi:10.1145/2933575.2934550.
  11. Ross Duncan & Maxime Lucas (2014): Verifying the Steane code with Quantomatic. In: Bob Coecke & Matty Hoban: Proceedings 10th International Workshop on Quantum Physics and Logic (QPL 2013), Electronic Proceedings in Theoretical Computer Science 171, pp. 33–49, doi:10.4204/EPTCS.171.4.
  12. Ross Duncan & Simon Perdrix (2009): Graph States and the Necessity of Euler Decomposition. In: K. Ambos-Spies, B. Löwe & W. Merkle: Computability in Europe: Mathematical Theory and Computational Practice (CiE'09), Lecture Notes in Computer Science 5635. Springer, pp. 167–177, doi:10.1007/978-3-642-03073-4_18.
  13. Ross Duncan & Simon Perdrix (2014): Pivoting makes the ZX-calculus complete for real stabilizers. In: Bob Coecke & Matty Hoban: Proceedings 10th International Workshop on Quantum Physics and Logic, Castelldefels (Barcelona), Spain, 17th to 19th July 2013, Electronic Proceedings in Theoretical Computer Science 171. Open Publishing Association, pp. 50–62, doi:10.4204/EPTCS.171.5.
  14. Liam Garvie & Ross Duncan (2018): Verifying the Smallest Interesting Colour Code with Quantomatic. In: Bob Coecke & Aleks Kissinger: Proceedings 14th International Conference on Quantum Physics and Logic (QPL 2017), Nijmegen, The Netherlands, 3-7 July 2017, Electronic Proceedings in Theoretical Computer Science 266, pp. 147–163, doi:10.4204/EPTCS.266.10.
  15. Daniel Gottesman (1999): The Heisenberg Representation of Quantum Computers. In: S. P. Corney, R. Delbourgo & P. D. Jarvis: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics. International Press, pp. 32–43.
  16. Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics. In: LICS '18- Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science arXiv:1705.11151. ACM, doi:10.1145/3209108.3209131.
  17. A. Kissinger, L. Dixon, R. Duncan, B. Frot, A. Merry, D. Quick, M. Soloviev & V. Zamdzhiev: Quantomatic. Available at
  18. Aleks Kissinger & Vladimir Zamdzhiev (2015): Quantomatic: A Proof Assistant for Diagrammatic Reasoning. In: P. Amy Felty & Aart Middeldorp: Automated Deduction - CADE-25: 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Springer, pp. 326–336, doi:10.1007/978-3-319-21401-6_22.
  19. Stephen Lack (2004): Composing PROPs. Theory and Applications of Categories 13(9), pp. 147–163.
  20. Saunders Mac Lane (1965): Categorical Algebra. Bull. Amer. Math. Soc. 71, pp. 40–106, doi:10.1090/S0002-9904-1965-11234-4.
  21. Dmitri Maslov & Martin Roetteler (2018): Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations. IEEE Transactions on Information Theory 64(7), pp. 4729–4738, doi:10.1109/TIT.2018.2825602.
  22. Kang Feng Ng & Quanlong Wang (2017): A universal completion of the ZX-calculus. ArXiv:1706.09877.
  23. Simon Perdrix & Quanlong Wang (2016): Supplementarity is Necessary for Quantum Diagram Reasoning. In: Piotr Faliszewski, Anca Muscholl & Rolf Niedermeier: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), Leibniz International Proceedings in Informatics (LIPIcs) 58. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 76:1–76:14, doi:10.4230/LIPIcs.MFCS.2016.76.
  24. R. Raussendorf & H. J. Briegel (2001): A One-Way Quantum Computer. Phys. Rev. Lett. 86, pp. 5188–5191, doi:10.1103/PhysRevLett.86.5188.
  25. Peter Selinger (2015): Generators and relations for n-qubit Clifford operators. Logical Methods in Computer Science 11(2:10), doi:10.2168/LMCS-11(2:10)2015.

Comments and questions to:
For website issues: