1. Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  2. Huzihiro Araki (1980): On a characterization of the state space of quantum mechanics. Communications in Mathematical Physics 75(1), pp. 1–24, doi:10.1007/BF01962588.
  3. Silvio Bergia, Francesco Cannata, Alfonso Cornia & Roberto Livi (1980): On the actual measurability of the density matrix of a decaying system by means of measurements on the decay products. Foundations of Physics 10(9-10), pp. 723–730, doi:10.1007/BF00708418.
  4. G. Chiribella, G. M. D'Ariano & P. Perinotti (2011): Informational derivation of quantum theory. Physical Review A 84(1), pp. 012311, doi:10.1103/PhysRevA.84.012311.
  5. B. Coecke, F. Genovese, M. Lewis, D. Marsden & A.Toumi (2018): Generalized Relations in Linguistics & Cognition. Theoretical Computer Science, doi:10.1016/j.tcs.2018.03.008.
  6. B. Coecke, M. Sadrzadeh & S. Clark (2010): Mathematical Foundations for Distributed Compositional Model of Meaning. Lambek Festschrift. Linguistic Analysis 36, pp. 345–384.
  7. Bob Coecke, Fabrizio Genovese, Stefano Gogioso, Dan Marsden & Robin Piedeleu (2017): Uniqueness of Composition in Quantum Theory and Linguistics. EPTCS (QPL 2017) 266, doi:10.4204/EPTCS.266.17.
  8. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes. Cambridge University Press, doi:10.1017/9781316219317.
  9. Samuel Eilenberg (1960): Abstract description of some basic functors. J. Indian Math. Soc 24, pp. 231–234.
  10. Stefano Gogioso (2017): Fantastic Quantum Theories and Where to Find Them.
  11. L. Hardy (2001): Quantum theory from five reasonable axioms. arXiv:quant-ph/0101012.
  12. Dirk Hofmann, Gavin J Seal & Walter Tholen (2014): Monoidal Topology: A Categorical Approach to Order, Metric, and Topology 153. Cambridge University Press, doi:10.1017/CBO9781107517288.
  13. G. M. Kelly (1972): Many-variable functorial calculus I. In: G. M. Kelly, M. Laplaza, G. Lewis & S. Mac Lane: Coherence in Categories, Lecture Notes in Mathematics 281. Springer-Verlag, pp. 66–105, doi:10.1007/BFb0059556.
  14. G. M. Kelly & M. L. Laplaza (1980): Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, pp. 193–213, doi:10.1016/0022-4049(80)90101-2.
  15. F William Lawvere (1973): Metric spaces, generalized logic, and closed categories. Rendiconti del seminario matématico e fisico di Milano 43(1), pp. 135–166, doi:10.1007/BF02924844.
  16. John H Selby, Carlo Maria Scandolo & Bob Coecke (2018): Reconstructing quantum theory from diagrammatic postulates. arXiv preprint arXiv:1802.00367.
  17. Charles E Watts (1960): Intrinsic characterizations of some additive functors. Proceedings of the American Mathematical Society 11(1), pp. 5–8, doi:10.1090/S0002-9939-1960-0118757-0.

Comments and questions to:
For website issues: