References

  1. Matthew Amy, Dmitri Maslov & Michele Mosca (2014): Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33(10), pp. 1476–1489, doi:10.1109/TCAD.2014.2341953. Available at http://arxiv.org/abs/1303.2042v2.
  2. Matthew Amy, Dmitri Maslov, Michele Mosca & Martin Roetteler (2013): A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(6), pp. 818–830, doi:10.1109/TCAD.2013.2244643. Available at http://arxiv.org/abs/1206.0758.
  3. Matthew Amy & Michele Mosca (2016): T-count optimization and Reed-Muller codes. Available at http://arxiv.org/abs/1601.07363.
  4. Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, PawełSobociński & Fabio Zanasi (2016): Rewriting Modulo Symmetric Monoidal Structure. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16. ACM, New York, NY, USA, pp. 710–719, doi:10.1145/2933575.2935316. Available at http://arxiv.org/abs/1602.06771.
  5. Andrew W Cross, Easwar Magesan, Lev S Bishop, John A Smolin & Jay M Gambetta (2016): Scalable randomised benchmarking of non-Clifford gates. npj Quantum Information 2, doi:10.1002/rsa.3240040108. Available at http://arxiv.org/abs/1510.02720.
  6. Brett Giles & Peter Selinger (2013): Exact synthesis of multiqubit Clifford+T circuits. Physical Review A 87, pp. 032332, doi:10.1103/PhysRevA.52.3457. Available at http://arxiv.org/abs/1212.0506.
  7. David Gosset, Vadym Kliuchnikov, Michele Mosca & Vincent Russo (2014): An Algorithm for the T-count. Quantum Information & Computation 14(15-16), pp. 1261–1276. Available at http://arxiv.org/abs/1308.4134.
  8. Mark Howard & Earl T. Campbell (2016): A unified framework for magic state distillation and multi-qubit gate-synthesis with reduced resource cost. Available at http://arxiv.org/abs/1606.01904.
  9. Vadym Kliuchnikov, Dmitri Maslov & Michele Mosca (2013): Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates. Quantum Information & Computation 13(7–8), pp. 607–630. Available at http://arxiv.org/abs/1206.5236v4.
  10. Yves Lafont (2003): Towards an Algebraic Theory of Boolean Circuits. Journal of Pure and Applied Algebra 184(2-3), pp. 257–310, doi:10.1016/S0022-4049(03)00069-0. Available at http://iml.univ-mrs.fr/~lafont/pub/circuits.pdf.
  11. S.M. Lane (1998): Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer, New York, NY, USA.
  12. Ken Matsumoto & Kazuyuki Amano (2008): Representation of Quantum Circuits with Clifford and π/8 Gates. Available at http://arxiv.org/abs/0806.3834.
  13. Michael A. Nielsen & Isaac L. Chuang (2002): Quantum Computation and Quantum Information. Cambridge University Press, New York, NY, USA.
  14. Ryan O'Donnell (2014): Analysis of Boolean Functions. Cambridge University Press, New York, NY, USA, doi:10.1017/CBO9781139814782.
  15. Neil J. Ross & Peter Selinger (2016): Optimal ancilla-free Clifford+T approximation of z-rotations. Quantum Information & Computation 16(11&12), pp. 901–953. Available at http://arxiv.org/abs/1403.2975.
  16. Peter Selinger (2011): A Survey of Graphical Languages for Monoidal Categories. In: Bob Coecke: New Structures for Physics, Lecture Notes in Physics 813. Springer, pp. 289–355, doi:10.1007/978-3-642-12821-9_4. Available at http://arxiv.org/abs/0908.3347.
  17. Peter Selinger (2015): Generators and Relations for n-Qubit Clifford Operators. Logical Methods in Computer Science 11(10), pp. 1–17. Available at http://arxiv.org/abs/1310.6813v3.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org