References

  1. J. L. Bell (2005): Set Theory: Boolean-Valued Models and Independence Proofs, 3rd edition. Oxford UP, Oxford, doi:10.1093/acprof:oso/9780198568520.001.0001.
  2. G. Birkhoff & J. von Neumann (1936): The Logic of Quantum Mechanics. Ann. Math. 37, pp. 823–843, doi:10.2307/1968621.
  3. G. Bruns & G. Kalmbach (1973): Some remarks on free orthomodular lattices. In: J. Schmidt: Proc. Lattice Theory Conf., Houston, U.S.A., pp. 397–408.
  4. G. Chevalier (1989): Commutators and Decompositions of Orthomodular Lattices. Order 6, pp. 181–194, doi:10.1007/BF02034335.
  5. P. J. Cohen (1963): The independence of the continuum hypothesis I. Proc. Nat. Acad. Sci. U.S.A. 50, pp. 1143–1148, doi:10.1073/pnas.50.6.1143.
  6. P. J. Cohen (1966): Set Theory and the Continuum Hypothesis. Benjamin, New York.
  7. A. Doering & B. Dewitt (2012): Self-adjoint Operators as Functions I: Lattices, Galois Connections, and the Spectral Order. Available at https://arxiv.org/abs/1208.4724.
  8. M. P. Fourman & D. S. Scott (1979): Sheaves and logic. In: M. P. Fourman, C. J. Mulvey & D. S. Scott: Applications of Sheaves: Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham, July 9-21, 1977, Lecture Notes in Math. 753. Springer, Berlin, pp. 302–401, doi:10.1007/BFb0061824.
  9. R. J. Grayson (1979): Heyting-valued models for intuitionistic set theory. In: M. P. Fourman, C. J. Mulvey & D. S. Scott: Applications of Sheaves: Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham, July 9-21, 1977, Lecture Notes in Math. 753. Springer, Berlin, pp. 402–414, doi:10.1007/BFb0061825.
  10. S. Gudder (1969): Joint Distributions of Observables. Indiana Univ. Math. J. 18, pp. 325–335, doi:10.1512/iumj.1969.18.18025.
  11. G. M. Hardegree (1981): Material implication in orthomodular (and Boolean) lattices. Notre Dame J. Formal Logic 22, pp. 163–182, doi:10.1305/ndjfl/1093883401.
  12. P. T. Johnstone (1977): Topos theory. London Mathematical Society Monographs, vol. 10. Academic, London.
  13. G. Kalmbach (1983): Orthomodular Lattices. Academic, London.
  14. E. L. Marsden (1970): The commutator and solvability in a generalized orthomodular lattice. Pacific J. Math 33, pp. 357–361, doi:10.2140/pjm.1970.33.357.
  15. J. von Neumann (1955): Mathematical Foundations of Quantum Mechanics. Princeton UP, Princeton, NJ. [Originally published:ıt Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)].
  16. M. P. Olson (1971): The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. Amer. Math. Soc. 28(2), pp. 537–544, doi:10.1090/S0002-9939-1971-0276788-1.
  17. M. Ozawa (2006): Quantum perfect correlations. Ann. Physics 321, pp. 744–769, doi:10.1016/j.aop.2005.08.007.
  18. M. Ozawa (2007): Transfer principle in quantum set theory. J. Symbolic Logic 72, pp. 625–648, doi:10.2178/jsl/1185803627.
  19. M. Ozawa (2016): Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory. New Generat. Comput. 34, pp. 125–152, doi:10.1007/s00354-016-0205-2.
  20. A. Płaneta & J. Stochel (2012): Spectral order for unbounded operators. J. Math. Anal. App. 389(2), pp. 1029–1045, doi:10.1016/j.jmaa.2011.12.042.
  21. S. Pulmannová (1985): Commutators in orthomodular lattices. Demonstratio Math. 18, pp. 187–208.
  22. D. Scott & R. Solovay: Boolean-Valued Models for Set Theory. Unpublished manuscript for Proc. AMS Summer Institute on Set Theory, Los Angeles: Univ. Cal., 1967.
  23. G. Takeuti (1981): Quantum set theory. In: E. G. Beltrametti & B. C. van Fraassen: Current Issues in Quantum Logic. Plenum, New York, pp. 303–322, doi:10.1007/978-1-4613-3228-2_19.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org