1. F. A. Al-Agl, R. Brown & R. Steiner (2002): Multiple categories: the equivalence of a globular and a cubical approach. Advances in Mathematics 170(1), pp. 71–118, doi:10.1006/aima.2001.2069.
  2. M. Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics 16(9), pp. 093021, doi:10.1088/1367-2630/16/9/093021.
  3. K. Bar, A. Kissinger & J. Vicary: The Globular proof assistant.
  4. M. Batanin (2002): Computads and slices of operads. Available at
  5. J. Beck (1969): Distributive laws. In: Seminar on triples and categorical homology theory. Springer, pp. 119–140, doi:10.1007/BFb0083084.
  6. J. M. Boardman & R. M. Vogt (1973): Homotopy invariant algebraic structures on topological spaces. Springer, doi:10.1007/978-3-642-54830-7_23.
  7. F. Bonchi, P. Sobociński & F. Zanasi (2014): Interacting Bialgebras Are Frobenius. In: Foundations of Software Science and Computation Structures. Springer, pp. 351–365, doi:10.1007/978-3-642-54830-7_23.
  8. F. Bonchi, P. Sobocinski & F. Zanasi (2017): Interacting Hopf algebras. Journal of Pure and Applied Algebra 221(1), pp. 144 – 184, doi:10.1016/j.jpaa.2016.06.002.
  9. R. Brown & P. J. Higgins (1981): On the algebra of cubes. Journal of Pure and Applied Algebra 21(3), pp. 233–260, doi:10.1016/0022-4049(81)90018-9.
  10. R. Brown & P. J. Higgins (1987): Tensor products and homotopies for ω-groupoids and crossed complexes. Journal of Pure and Applied Algebra 47(1), pp. 1–33, doi:10.1016/0022-4049(87)90099-5.
  11. R. Brown, P. J. Higgins & R. Sivera (2011): Nonabelian algebraic topology. European Mathematical Society, doi:10.4171/083.
  12. M. Buckley & R. Garner (2015): Orientals and cubes, inductively. Available at
  13. A. Burroni (1993): Higher-dimensional word problems with applications to equational logic. Theoretical Computer Science 115(1), pp. 43–62, doi:10.1016/0304-3975(93)90054-W.
  14. B. Coecke & R. Duncan (2008): Interacting quantum observables. In: Automata, Languages and Programming. Springer, pp. 298–310, doi:10.1007/978-3-540-70583-3_25.
  15. B. Coecke & A. Kissinger (2017): Picturing quantum processes. Cambridge University Press. To appear.
  16. S. E. Crans (1995): Pasting schemes for the monoidal biclosed structure on ω-Cat. Utrecht University.
  17. R. Duncan & K. Dunne (2016): Interacting Frobenius Algebras Are Hopf. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, pp. 535–544, doi:10.1145/2933575.2934550.
  18. L. Dunn & J. Vicary (2016): Coherence for Frobenius pseudomonoids and the geometry of linear proofs. Available at
  19. B. Eckmann & P. J. Hilton (1962): Group-like structures in general categories I: multiplications and comultiplications. Mathematische Annalen 145(3), pp. 227–255, doi:10.1007/BF01451367.
  20. M. Grandis (2009): Directed Algebraic Topology: Models of non-reversible worlds 13. Cambridge University Press, doi:10.1017/CBO9780511657474.
  21. Y. Guiraud (2006): The three dimensions of proofs. Annals of Pure and Applied Logic 141(1), pp. 266–295, doi:10.1016/j.apal.2005.12.012.
  22. A. Hadzihasanovic (2015): A Diagrammatic Axiomatisation for Qubit Entanglement. In: Logic in Computer Science (LICS), 2015 30th Annual ACM/IEEE Symposium on. IEEE, pp. 573–584, doi:10.1109/LICS.2015.59.
  23. C. Hermida (2000): Representable multicategories. Advances in Mathematics 151(2), pp. 164–225, doi:10.1006/aima.1999.1877.
  24. C. Hermida (2001): From coherent structures to universal properties. Journal of Pure and Applied Algebra 165(1), pp. 7–61, doi:10.1016/S0022-4049(01)00008-1.
  25. C. Heunen & J. Vicary (2012): Lectures on categorical quantum mechanics. Computer Science Department. Oxford University.
  26. R. Hinze & D. Marsden (2016): Equational reasoning with lollipops, forks, cups, caps, snakes, and speedometers. Journal of Logical and Algebraic Methods in Programming, doi:10.1016/j.jlamp.2015.12.004.
  27. S. Lack (2004): Composing PROPs. Theory and Applications of Categories 13(9), pp. 147–163.
  28. Y. Lafont (2007): Algebra and geometry of rewriting. Applied Categorical Structures 15(4), pp. 415–437, doi:10.1007/s10485-007-9083-6.
  29. Y. Lafont & F. Métayer (2009): Polygraphic resolutions and homology of monoids. Journal of Pure and Applied Algebra 213(6), pp. 947–968, doi:10.1016/j.jpaa.2008.10.005.
  30. S. MacLane (1963): Natural associativity and commutativity. Rice Institute Pamphlet-Rice University Studies 49(4).
  31. M. Makkai (2005): The word problem for computads. Available on the author's web page
  32. M. Markl (2008): Operads and PROPS. Handbook of Algebra 5, pp. 87–140, doi:10.1016/S1570-7954(07)05002-4.
  33. M. Markl, S. Shnider & J. D. Stasheff (2007): Operads in algebra, topology and physics 96. American Mathematical Soc., doi:10.1090/surv/096.
  34. F. Métayer (2003): Resolutions by polygraphs. Theory and Applications of Categories 11(7), pp. 148–184.
  35. S. Mimram (2014): Towards 3-dimensional rewriting theory. Available at
  36. J.H.H. Perk & H. Au-Yang (2006): Yang-Baxter equations. Available at
  37. P. Selinger (2011): Finite dimensional Hilbert spaces are complete for dagger compact closed categories. Electronic Notes in Theoretical Computer Science 270(1), pp. 113–119, doi:10.1016/j.entcs.2011.01.010.
  38. P. Selinger (2011): A survey of graphical languages for monoidal categories. In: New structures for physics. Springer, pp. 289–355.
  39. R. Steiner (2004): Omega-categories and chain complexes. Homology, Homotopy and Applications 6(1), pp. 175–200, doi:10.4310/HHA.2004.v6.n1.a12.
  40. R. Street (1976): Limits indexed by category-valued 2-functors. Journal of Pure and Applied Algebra 8(2), pp. 149–181, doi:10.1016/0022-4049(76)90013-X.
  41. R. Street (1987): The algebra of oriented simplexes. Journal of Pure and Applied Algebra 49(3), pp. 283–335, doi:10.1016/0022-4049(87)90137-X.
  42. A. A. Tubella & A. Guglielmi (2016): Subatomic Proof Systems. Available on the author's web page
  43. I. Weiss (2011): From operads to dendroidal sets. Mathematical foundations of quantum field theory and perturbative string theory 83, pp. 31–70, doi:10.1090/pspum/083/2742425.
  44. W. Zeng (2015): The Abstract Structure of Quantum Algorithms. Available at

Comments and questions to:
For website issues: