1. S. Abramsky (2013): In Search of Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter Buneman, chapter Relational Databases and Bell's Theorem, pp. 13–35. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-41660-6_2.
  2. S. Abramsky, R. Soares Barbosa, K. Kishida, R. Lal & S. Mansfield (2015): Contextuality, cohomology and paradox. In: S. Kreutzer: 24th EACSL Annual Conference on Computer Science Logic (CSL 2015), Leibniz International Proceedings in Informatics (LIPIcs) 41. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 211–228, doi:10.4230/LIPIcs.CSL.2015.211.
  3. S. Abramsky & A. Brandenburger (2011): The Sheaf-Theoretic Structure of Non-Locality and Contextuality. New Journal of Physics 13, pp. 113036–113075, doi:10.1088/1367-2630/13/11/113036.
  4. S. Abramsky, G. Gottlob & P. Kolaitis (2013): Robust Constraint Satisfaction and Local Hidden Variables in Quantum Mechanics. In: Artificial Intelligence (IJCAI '13), 2013 23rd International Joint Conference on. AAAI Press, pp. 440–446. Available at
  5. S. Abramsky, S. Mansfield & R. Soares Barbosa (2012): The cohomology of non-locality and contextuality. Electronic Proceedings in Theoretical Computer Science 95 - Proceedings 8th International Workshop on Quantum Physics and Logic (QPL 2011), Nijmegen, pp. 1–14, doi:10.4204/EPTCS.95.1.
  6. J. Baez: Torsors Made Easy. Available at
  7. R. Soares Barbosa (2014): On monogamy of non-locality and macroscopic averages: examples and preliminary results. Electronic Proceedings in Theoretical Computer Science 172 - Proceedings 11th International Workshop on Quantum Physics and Logic (QPL 2014), Kyoto, pp. 36–55, doi:10.4204/EPTCS.172.4.
  8. R. Soares Barbosa (2015): Contextuality in quantum mechanics and beyond. D.Phil. thesis, Oxford University.
  9. J. S. Bell (1964): On the Einstein Podolsky Rosen paradox. Physics 1(3), pp. 195–200, doi:10.1016/S0065-3276(08)60492-X.
  10. G. Carù (2015): Detecting Contextuality: Sheaf Cohomology and All vs Nothing Arguments. University of Oxford. Available at
  11. D. E. Daykin & R. Häggkvist (1981): Degrees giving independent edges in a hypergraph. Bulletin of the Australian Mathematical Society 23(01), pp. 103–109, doi:10.1017/S0004972700006924.
  12. D. M. Greenberger, M. A. Horne, A. Shimony & A. Zeilinger (1990): Bell's theorem without inequalities. American Journal of Physics 58(12), pp. 1131–1143, doi:10.1119/1.16243.
  13. D. M. Greenberger, M. A. Horne & A. Zeilinger (1989): Going beyond Bell's Theorem, doi:10.1007/978-94-017-0849-4_10.
  14. L. Hardy (1992): Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68(20), pp. 2981–2984, doi:10.1103/PhysRevLett.68.2981.
  15. L. Hardy (1993): Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71(11), pp. 1665–1668, doi:10.1103/PhysRevLett.71.1665.
  16. M. Howard, J. Wallman, V. Veitch & J. Emerson (2014): Contextuality supplies the "magic" for quantum computation. Nature 510(7505), pp. 351–355, doi:10.1038/nature13460.
  17. S. Kochen & E. P. Specker (1975): The Problem of Hidden Variables in Quantum Mechanics. In: The Logico-Algebraic Approach to Quantum Mechanics, The University of Western Ontario Series in Philosophy of Science 5a. Springer Netherlands, pp. 293–328, doi:10.1007/978-94-010-1795-4_17.
  18. S. Mansfield (2013): The Mathematical Structure of Non-Locality & Contextuality. D.Phil. thesis, Oxford University. Available at
  19. S. Mansfield & R. Soares Barbosa (2013): Extendability in the sheaf-theoretic approach: Construction of Bell models from Kochen-Specker models. In: Informal pre-proceedings of 10th Workshop on Quantum Physics and Logic (QPL 2013), ICFo Barcelona. Available at
  20. N. D. Mermin (1990): Quantum mysteries revisited. American Journal of Physics 58(8), pp. 731–734, doi:10.1119/1.16503.
  21. N. D. Mermin (1993): Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, pp. 803–815, doi:10.1103/RevModPhys.65.803.
  22. N.D. Mermin (1990): Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, pp. 3373–3376, doi:10.1103/PhysRevLett.65.3373.
  23. R. Penrose (1992): On the Cohomology of Impossible Figures. Leonardo 25(3/4), pp. 245–247, doi:10.2307/1575844.
  24. A. Peres (1990): Incompatible results of quantum measurements. Physics Letters A 151(3), pp. 107 – 108, doi:10.1016/0375-9601(90)90172-K.
  25. S. Popescu & D. Rohrlich: Quantum nonlocality as an axiom. Foundations of Physics 24(3), pp. 379–385, doi:10.1007/BF02058098.
  26. M. M. Postnikov (1951): Determination of the homology groups of a space by means of the homotopy invariants. In: Dokl. Akad. Nauk. SSSR (N.S.) 76, pp. 359–362.
  27. A. Skorobogatov (2001): Torsors and Rational Points. Cambridge University Press. Available at Cambridge Books Online.

Comments and questions to:
For website issues: