1. Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. In: Logic in Computer Science, 2004. Proceedings of the 19th Annual IEEE Symposium on. IEEE, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  2. Erik M Alfsen & Frederik W Shultz (2012): State spaces of operator algebras: basic theory, orientations, and C*-products. Springer Science & Business Media, doi:10.1007/978-1-4612-0147-2.
  3. John Baez & Mike Stay (2011): Physics, Topology, Logic and Computation: A Rosetta Stone. In: Bob Coecke: New Structures for Physics, Lecture Notes in Physics 813. Springer Berlin Heidelberg, pp. 95–172, doi:10.1007/978-3-642-12821-9_2.
  4. Ola Bratteli (1972): Inductive limits of finite dimensional C*-algebras. Transactions of the American Mathematical Society 171, pp. 195–234, doi:10.2307/1996380.
  5. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2010): Probabilistic theories with purification. Physical Review A 81(6), pp. 062348, doi:10.1103/PhysRevA.81.062348.
  6. Kenta Cho (2016): Semantics for a Quantum Programming Language by Operator Algebras. New Generation Computing 34(1), pp. 25–68, doi:10.1007/s00354-016-0204-3.
  7. Man-Duen Choi (1975): Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), pp. 285–290, doi:10.1016/0024-3795(75)90075-0.
  8. Bob Coecke (2008): Axiomatic description of mixed states from Selinger's CPM-construction. Electronic Notes in Theoretical Computer Science 210, pp. 3–13, doi:10.1016/j.entcs.2008.04.014.
  9. Bob Coecke & Keye Martin (2011): A partial order on classical and quantum states. Springer, doi:10.1007/978-3-642-12821-9_10.
  10. Bob Coecke & Dusko Pavlovic (2006): Quantum measurements without sums, doi:10.1201/9781584889007.
  11. Alain Connes (1992): Noncommutative geometry. Springer, doi:10.1007/BFb0089204.
  12. Brian Day (1970): On closed categories of functors. In: Reports of the Midwest Category Seminar IV. Springer, pp. 1–38, doi:10.1007/BFb0060438.
  13. Ellie D'Hondt & Prakash Panangaden (2006): Quantum weakest preconditions. Mathematical Structures in Computer Science 16(03), pp. 429–451, doi:10.1017/S0960129506005251.
  14. Jacques Dixmier (1977): C*-Algebras. North-Holland Mathematical Library 15. North-Holland Publishing Company.
  15. Jacques Dixmier (1981): Von Neumann Algebras. North-Holland Mathematical Library 27. North-Holland Publishing Company.
  16. Richard P Feynman (1986): Quantum mechanical computers. Foundations of physics 16(6), pp. 507–531, doi:10.1007/BF01886518.
  17. Cecilia Flori & Tobias Fritz (2016): (Almost) C^*-algebras as sheaves with self-action. arxiv:1512.01669v2.
  18. Tobias Fritz (2013): On infinite-dimensional state spaces. Journal of Mathematical Physics 54(5), pp. 052107, doi:10.1063/1.4807079.
  19. Robert Furber (2016): Categorical Duality in Probability and Quantum Foundations. Radboud University, Nijmegen.
  20. Robert Furber & Bart Jacobs (2013): From Kleisli categories to commutative C*-algebras: probabilistic Gelfand duality. In: Algebra and Coalgebra in Computer Science. Springer, pp. 141–157, doi:10.1007/978-3-642-40206-7_12.
  21. Roman Gielerak & Marek Sawerwain (2010): Generalised quantum weakest preconditions. Quantum Information Processing 9(4), pp. 441–449, doi:10.1007/s11128-009-0151-8.
  22. Alexander Grothendieck (1996): Résumé de la théorie métrique des produits tensoriels topologiques. Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo 2(4), pp. 401–481.
  23. Lucien Hardy (2001): Quantum theory from five reasonable axioms. arXiv:quant-ph/0101012.
  24. Chris Heunen, Aleks Kissinger & Peter Selinger (2013): Completely positive projections and biproducts. arXiv:quant-ph/1308.4557.
  25. Max Kelly (1982): Basic concepts of enriched category theory 64. CUP Archive.
  26. Saunders Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer Verlag, doi:10.1007/978-1-4612-9839-7.
  27. Ciarán M Lee & Jonathan Barrett (2015): Computation in generalised probabilisitic theories. New Journal of Physics 17(8), pp. 083001, doi:10.1088/1367-2630/17/8/083001.
  28. Octavio Malherbe, Philip Scott & Peter Selinger (2013): Presheaf models of quantum computation: an outline. In: Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Springer, pp. 178–194, doi:10.1007/978-3-642-38164-5_13.
  29. Paul-André Melliès (2010): Segal Condition Meets Computational Effects. In: Proc. LICS 2010, pp. 150–159, doi:10.1109/LICS.2010.46.
  30. Isaac Namioka (1957): Partially ordered linear topological spaces. Memoirs of the American Mathematical Society 24. American Mathematical Soc..
  31. Michael A Nielsen & Isaac L Chuang (2010): Quantum computation and quantum information. Cambridge university press, doi:10.1017/CBO9780511976667.
  32. Michele Pagani, Peter Selinger & Benoît Valiron (2014): Applying Quantitative Semantics to Higher-order Quantum Computing. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '14. ACM, pp. 647–658, doi:10.1145/2535838.2535879.
  33. Vern Paulsen (2002): Completely bounded maps and operator algebras 78. Cambridge University Press.
  34. JW Pelletier & J Rosický (1993): On the equational theory of C*-algebras. Algebra Universalis 30, pp. 275–284, doi:10.1007/BF01196099.
  35. Gilles Pisier (2003): Introduction to Operator Space Theory. London Mathematical Society Lecture Note Series. Cambridge University Press, doi:10.1017/CBO9781107360235.
  36. TC Ralph, Alexei Gilchrist, Gerard J Milburn, William J Munro & Scott Glancy (2003): Quantum computation with optical coherent states. Physical Review A 68(4), pp. 042319, doi:10.1103/PhysRevA.68.042319.
  37. Mathys Rennela (2014): Towards a Quantum Domain Theory: Order-enrichment and Fixpoints in W*-algebras. In: Proceedings of the 30th Conference on the Mathematical Foundations of Programming Semantics (MFPS XXX) 308. Electronic Notes in Theoretical Computer Science, pp. 289 – 307, doi:10.1016/j.entcs.2014.10.016.
  38. Mathys Rennela & Sam Staton (2015): Complete positivity and natural representation of quantum computations. In: Proceedings of the 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI) 319. Electronic Notes in Theoretical Computer Science, pp. 369–385, doi:10.1016/j.entcs.2015.12.022.
  39. Shôichirô Sakai (2012): C*-algebras and W*-algebras. Springer Science & Business Media, doi:10.1007/978-3-642-61993-9.
  40. Helmut H. Schaefer (1966): Topological Vector Spaces. Graduate Texts in Mathematics 3. Springer Verlag, doi:10.1007/978-1-4612-1468-7.
  41. Peter Selinger (2008): Idempotents in dagger categories. Electronic Notes in Theoretical Computer Science 210, pp. 107–122, doi:10.1016/j.entcs.2008.04.021.
  42. Sam Staton & Sander Uijlen (2015): Effect algebras, presheaves, non-locality and contextuality. In: Proc. ICALP 2015, doi:10.1007/978-3-662-47666-6_32.
  43. Erling Størmer (2012): Positive Linear Maps of Operator Algebras. Springer Monographs in Mathematics. Springer Berlin Heidelberg, doi:10.1007/978-3-642-34369-8.
  44. Masamichi Takesaki (2002): Theory of operator algebras. I. Springer-Verlag, Berlin.
  45. Sean Tull (2016): Operational Theories of Physics as Categories. arXiv:quant-ph/1602.06284.
  46. Jamie Vicary (2011): Categorical formulation of finite-dimensional quantum algebras. Communications in Mathematical Physics 304(3), pp. 765–796, doi:10.1007/s00220-010-1138-0.
  47. Eberhard Zeidler (2008): Quantum Field Theory II: Quantum Electrodynamics: A Bridge between Mathematicians and Physicists. Quantum Field Theory. Springer Berlin Heidelberg, doi:10.1007/978-3-540-85377-0.

Comments and questions to:
For website issues: