1. Samson Abramsky (2012): Big toy models - Representing physical systems as Chu spaces. Synthese 186(3), pp. 697–718, doi:10.1007/s11229-011-9912-x.
  2. Samson Abramsky & Bob Coecke (2004): A Categorical Semantics of Quantum Protocols. In: Proceedings of LICS 2004. IEEE Computer Society, pp. 415–425, doi:10.1109/LICS.2004.1.
  3. Jiři Adámek & Jiři Rosický (1994): Locally Presentable and Accessible Categories. London Mathematical Society Lecture Notes 189. Cambridge University Press, doi:10.1017/CBO9780511600579.
  4. Enrico G. Beltrametti & Slawomir Bugajski (1997): Effect algebras and statistical physical theories. Journal of Mathematical Physics 38, pp. 3020–3030, doi:10.1063/1.532031.
  5. Garrett Birkhoff & John von Neumann (1936): The logic of quantum mechanics. Annals of Mathematics 37, pp. 823–843, doi:10.2307/1968621.
  6. Aurelio Carboni & Robert F.C. Walters (1987): Cartesian bicategories, I. J. of Pure and Applied Algebra 49, pp. 11–32, doi:10.1016/0022-4049(87)90121-6.
  7. Kenta Cho, Bart Jacobs, Bas Westerbaan & Abraham Westerbaan (2015): An Introduction to Effectus Theory. Available at
  8. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(4), pp. 80pp, doi:10.1088/1367-2630/13/4/043016. Arxiv:0906.4725.
  9. Bob Coecke, Chris Heunen & Aleks Kissinger (2013): Compositional quantum logic. In: Bob Coecke, Luke Ong & Prakash Panangaden: Computation, Logic, Games, and Quantum Foundations, pp. 21–36, doi:10.1007/978-3-642-38164-5_3.
  10. Bob Coecke & Aleks Kissinger (2010): The Compositional Structure of Multipartite Quantum Entanglement. In: Proceedings of ICALP 2010, Part II, pp. 297–308, doi:10.1007/978-3-642-14162-1_25.
  11. Bob Coecke, Aleks Kissinger, Alex Merry & Shibdas Roy (2010): The GHZ/W-calculus contains rational arithmetic. In: Farid M. Ablayev, Bob Coecke & Alexander Vasiliev: CSR Workshop on High Productivity Computations, HPC 2010, EPTCS 52, pp. 34–48.
  12. Bob Coecke, Éric Oliver Paquette & Dusko Pavlovic (2009): Classical and quantum structuralism. In: Simon Gay & Ian Mackie: Semantical Techniques in Quantum Computation. Cambridge University Press, pp. 29–69, doi:10.1017/CBO9781139193313.003.
  13. Bob Coecke & Dusko Pavlovic (2007): Quantum measurements without sums. In: G. Chen, L. Kauffman & S. Lamonaco: Mathematics of Quantum Computing and Technology. Taylor and Francis, pp. 36pp, doi:10.1201/9781584889007.ch16. Available at
  14. Bob Coecke, Dusko Pavlovic & Jamie Vicary (2013): A new description of orthogonal bases. Math. Structures in Comp. Sci. 23(3), pp. 555–567, doi:10.1017/S0960129512000047. Available at
  15. David J Foulis & Mary Katherine Bennett (1994): Effect algebras and unsharp quantum logics. Foundations of Physics 24(10), pp. 1331–1352, doi:10.1007/BF02283036.
  16. Peter Freyd & Andre Scedrov (1990): Categories, Allegories. Mathematical Library 39. North-Holland.
  17. Stefano Gogioso (2015): A Bestiary of Sets and Relations. In: Chris Heunen, Peter Selinger & Jamie Vicary: Proceedings QPL 2015, Electronic Proceedings in Theoretical Computer Science 195. Open Publishing Association, pp. 208–227, doi:10.4204/EPTCS.195.16.
  18. Stanley Gudder (1997): Effect test spaces and effect algebras. Foundations of Physics 27(2), pp. 287–304, doi:10.1007/BF02550455.
  19. Amar Hadzihasanovic (2015): A Diagrammatic Axiomatisation for Qubit Entanglement. In: Symposium on Logic in Computer Science (LICS) 2015. IEEE Computer Society, pp. 573–584, doi:10.1109/LICS.2015.59.
  20. Chris Heunen & Sean Tull (2015): Categories of relations as models of quantum theory. In: Chris Heunen, Peter Selinger & Jamie Vicary: Proceedings of QPL 2015, Electronic Proceedings in Theoretical Computer Science 195. Open Publishing Association, pp. 247–261, doi:10.4204/EPTCS.195.18.
  21. Bart Jacobs (2015): New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic. Logical Methods in Computer Science 11(3), doi:10.2168/LMCS-11(3:24)2015.
  22. G. Max Kelly & Manuel L. Laplaza (1980): Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, pp. 193 – 213, doi:10.1016/0022-4049(80)90101-2.
  23. N. David Mermin (1985): Is the moon there when nobody looks? Reality and the quantum theory. Physics Today, pp. 38–47, doi:10.1063/1.880968.
  24. Robin Milner (1977): Fully abstract models of typed λ-calculi. Theoretical Computer Science 4(1), pp. 1 – 22, doi:10.1016/0304-3975(77)90053-6.
  25. John von Neumann (1955): Mathematical Foundations of Quantum Mechanics. Investigations in physics. Princeton University Press.
  26. John von Neumann (1960): Continuous Geometry. Princeton Landmarks in Mathematics and Physics. Princeton University Press.
  27. Dusko Pavlovic (1995): Maps I: relative to a factorisation system. J. Pure Appl. Algebra 99, pp. 9–34, doi:10.1016/0022-4049(94)00054-M.
  28. Dusko Pavlovic (1996): Maps II: Chasing diagrams in categorical proof theory. J. of the IGPL 4(2), pp. 1–36, doi:10.1093/jigpal/4.2.159.
  29. Dusko Pavlovic (2009): Quantum and classical structures in nondeterministic computation. In: Peter Bruza, Don Sofge & Keith van Rijsbergen: Proceedings of Quantum Interaction 2009, Lecture Notes in Artificial Intelligence 5494. Springer Verlag, pp. 143–158, doi:10.1007/978-3-642-00834-4_13. Available at
  30. Dusko Pavlovic (2011): Relating toy models of quantum computation: comprehension, complementarity and dagger autonomous categories. E. Notes in Theor. Comp. Sci. 270(2), pp. 121–139, doi:10.1016/j.entcs.2011.01.027. Available at
  31. Dusko Pavlovic (2012): Geometry of abstraction in quantum computation. Proceedings of Symposia in Applied Mathematics 71, pp. 233–267, doi:10.1090/psapm/071/607. Available at
  32. C. H. Randall & D. J. Foulis (1970): An Approach to Empirical Logic. The American Mathematical Monthly 77(4), pp. 363–374, doi:10.2307/2316143.
  33. Miklós Rédei (1996): Why John von Neumann did not like the Hilbert Space formalism of quantum mechanics (and what he liked instead). Studies in History and Philosophy of Modern Physics 27(4), pp. 493–510, doi:10.1016/S1355-2198(96)00017-2.
  34. Peter Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps. Electron. Notes Theor. Comput. Sci. 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  35. Robert W. Spekkens (2007): In defense of the epistemic view of quantum states: a toy theory. Physical Review A 75, pp. 032110, doi:10.1103/PhysRevA.75.032110.

Comments and questions to:
For website issues: