1. Alan Agresti (2013): Categorical data analysis. Wiley.
  2. László Babai & Eugene M Luks (1983): Canonical labeling of graphs. In: Proceedings of the fifteenth annual ACM symposium on Theory of computing. ACM, pp. 171–183, doi:10.1145/800061.808746.
  3. Olaf Bachmann, Gert-Martin Greuel, C Lossen, Gerhard Pfister & Hans Schönemann (2007): A Singular introduction to commutative algebra. Springer.
  4. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(4), pp. 043016, doi:10.1145/800061.808746.
  5. Bob Coecke, Dusko Pavlovic & Jamie Vicary (2013): A new description of orthogonal bases. Mathematical Structures in Computer Science 23, pp. 555–567, doi:10.1017/S0960129512000047.
  6. Andrew Critch & Jason Morton (2014): Algebraic geometry of matrix product states. SIGMA 10, pp. 095, doi:10.3842/SIGMA.2014.095.
  7. Lucas Dixon & Aleks Kissinger (2013): Open-graphs and monoidal theories. Mathematical Structures in Computer Science 23(02), pp. 308–359, doi:10.1017/S0960129512000138.
  8. Martin Fürer, Walter Schnyder & Ernst Specker (1983): Normal forms for trivalent graphs and graphs of bounded valence. In: Proceedings of the fifteenth annual ACM symposium on Theory of computing. ACM, pp. 161–170, doi:10.1145/800061.808745.
  9. Rudolf Halin (1976): S-functions for graphs. Journal of Geometry 8(1-2), pp. 171–186, doi:10.1007/BF01917434.
  10. Masahito Hasegawa, Martin Hofmann & Gordon Plotkin (2008): Finite dimensional vector spaces are complete for traced symmetric monoidal categories. In: Pillars of computer science. Springer, pp. 367–385, doi:10.1007/978-3-540-78127-1-20.
  11. Gregory M Kelly & Miguel L Laplaza (1980): Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, pp. 193–213, doi:10.1016/0022-4049(80)90101-2.
  12. A. Kissinger, A. Merry, B. Frot, B. Coecke, D. Quick, L. Dixon, M. Soloviev, R. Duncan & V. Zamdzhiev (2014): Quantomatic. Software available on-line at http://sites. google. com/site/quantomatic/.
  13. Aleks Kissinger (2012): Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and Applications to Quantum Computing. arXiv preprint arXiv:1203.0202.
  14. Frank R Kschischang, Brendan J Frey & H-A Loeliger (2001): Factor graphs and the sum-product algorithm. Information Theory, IEEE Transactions on 47(2), pp. 498–519, doi:10.1109/18.910572.
  15. Saunders Mac Lane (1998): Categories for the working mathematician 5. Springer verlag.
  16. Steffen L Lauritzen & David J Spiegelhalter (1988): Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society. Series B (Methodological), pp. 157–224.
  17. Eugene M Luks (1982): Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences 25(1), pp. 42–65, doi:10.1016/0022-0000(82)90009-5.
  18. Elitza Maneva, Elchanan Mossel & Martin J Wainwright (2007): A new look at survey propagation and its generalizations. Journal of the ACM (JACM) 54(4), pp. 17, doi:10.1145/1255443.1255445.
  19. Igor L Markov & Yaoyun Shi (2008): Simulating quantum computation by contracting tensor networks. SIAM Journal on Computing 38(3), pp. 963–981, doi:10.1137/050644756.
  20. Robert J. McEliece, David J. C. MacKay & Jung-Fu Cheng (1998): Turbo decoding as an instance of Pearl's “belief propagation” algorithm. Selected Areas in Communications, IEEE Journal on 16(2), pp. 140–152, doi:10.1109/49.661103.
  21. Adria Alcala Mena (2012): Trivalent Graph isomorphism in polynomial time. arXiv preprint arXiv:1209.1040.
  22. Marc Mezard & Andrea Montanari (2009): Information, physics, and computation. Oxford University Press, doi:10.1093/acprof:oso/9780198570837.001.0001.
  23. Samuel Mimram (2014): Towards 3-dimensional rewriting theory.
  24. Jason Morton & Jacob Biamonte (2012): Undecidability in tensor network states. Physical Review A 86(3), pp. 030301, doi:10.1103/PhysRevA.86.030301.
  25. Jason Morton & Jacob Turner (2015): Generalized counting constraint satisfaction problems with determinantal circuits. Linear Algebra and its Applications 466, pp. 357 – 381, doi:10.1016/j.laa.2014.09.050.
  26. Judea Pearl (1982): Reverend Bayes on inference engines: A distributed hierarchical approach. In: AAAI, pp. 133–136.
  27. P. Selinger (2011): A Survey of Graphical Languages for Monoidal Categories. In: Bob Coecke: New Structures for Physics, Lecture Notes in Physics 813. Springer Berlin Heidelberg, pp. 289–355, doi:10.1007/978-3-642-12821-9_4.
  28. Peter Selinger (2011): Finite dimensional Hilbert spaces are complete for dagger compact closed categories. Electronic Notes in Theoretical Computer Science 270(1), pp. 113–119, doi:10.1016/j.entcs.2011.01.010.
  29. David I Spivak (2012): Functorial data migration. Information and Computation 217, pp. 31–51, doi:10.1016/j.ic.2012.05.001.
  30. Steven R. White (1992): Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, pp. 2863–2866, doi:10.1103/PhysRevLett.69.2863.

Comments and questions to:
For website issues: