References

  1. Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. In: Logic in Computer Science, 2004. Proceedings of the 19th Annual IEEE Symposium on. IEEE, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  2. Samson Abramsky & Bob Coecke (2008): Categorical quantum mechanics. In: Kurt Engesser, Dov M. Gabbay & Daniel Lehmann: Handbook of quantum logic and quantum structures: quantum logic. Elsevier, pp. 261–324, doi:10.1016/B978-0-444-52869-8.500141.
  3. Antonio Acín, Tobias Fritz, Anthony Leverrier & Ana Belén Sainz (2012): A combinatorial approach to nonlocality and contextuality. arXiv:1212.4084.
  4. Steve Awodey (2006): Category theory 49. Oxford University Press, doi:10.1093/acprof:oso/9780198568612.001.0001.
  5. Howard Barnum, Jonathan Barrett, Matthew Leifer & Alexander Wilce (2007): Generalized no-broadcasting theorem. Physical Review Letters 99(24), pp. 240501, doi:10.1103/PhysRevLett.99.240501.
  6. Howard Barnum, Jonathan Barrett, Matthew Leifer & Alexander Wilce (2012): Teleportation in general probabilistic theories. In: Mathematical Foundations of Information Flow, Proceedings of Symposia in Applied Mathematics 71, pp. 25–48, doi:10.1090/psapm/071.
  7. Howard Barnum & Alexander Wilce (2011): Information processing in convex operational theories. Electronic Notes in Theoretical Computer Science 270(1), pp. 3–15, doi:10.1016/j.entcs.2011.01.002.
  8. Jonathan Barrett (2007): Information processing in generalized probabilistic theories. Physical Review A 75(3), pp. 032304, doi:10.1103/PhysRevA.75.032304.
  9. Charles Henry Bennett (2007): More about entanglement and cryptography. http://www.lancaster.ac.uk/users/esqn/windsor07/Lectures/Bennett2.pdf. Accessed: 2014-11-14.
  10. Adán Cabello, Simone Severini & Andreas Winter (2010): (Non-) Contextuality of Physical Theories as an Axiom. arXiv:1010.2163.
  11. Adán Cabello, Simone Severini & Andreas Winter (2014): Graph-Theoretic Approach to Quantum Correlations. Phys. Rev. Lett. 112, pp. 040401, doi:10.1103/PhysRevLett.112.040401.
  12. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo. Perinotti (2010): Probabilistic theories with purification. Phys. Rev. A 81, pp. 062348, doi:10.1103/PhysRevA.81.062348.
  13. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2011): Informational derivation of quantum theory. Phys. Rev. A 84, pp. 012311, doi:10.1103/PhysRevA.84.012311.
  14. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2012): Quantum Theory, namely the pure and reversible theory of information. Entropy 14(10), pp. 1877–1893, doi:10.3390/e14101877.
  15. Giulio Chiribella & Xiao Yuan (2014): Measurement sharpness cuts nonlocality and contextuality in every physical theory. arXiv preprint arXiv:1404.3348.
  16. Man-Duen Choi (1975): Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), pp. 285–290, doi:10.1016/0024-3795(75)90075-0.
  17. Bob Coecke (2006): Kindergarten quantum mechanics—lecture notes. In: Quantum theory: reconsideration of foundations-3, AIP Conference Proceedings 810, pp. 81–98.
  18. Bob Coecke (2008): Axiomatic description of mixed states from Selinger's CPM-construction. Electronic Notes in Theoretical Computer Science 210, pp. 3–13, doi:10.1016/j.entcs.2008.04.014.
  19. Bob Coecke (2010): Quantum picturalism. Contemporary physics 51(1), pp. 59–83, doi:10.1080/00107510903257624.
  20. Bob Coecke (2014): Terminality implies non-signalling. arXiv preprint arXiv:1405.3681.
  21. Bob Coecke & Raymond Lal (2013): Causal categories: relativistically interacting processes. Foundations of Physics 43(4), pp. 458–501, doi:10.1007/s10701-012-9646-8.
  22. Bob Coecke & Simon Perdrix (2010): Environment and Classical Channels in Categorical Quantum Mechanics. In: Anuj Dawar & Helmut Veith: Computer Science Logic, Lecture Notes in Computer Science 6247. Springer Berlin Heidelberg, pp. 230–244, doi:10.1007/978-3-642-15205-4_20.
  23. Borivoje Dakic & Caslav Brukner (2011): Quantum Theory and Beyond: Is Entanglement Special?. In: Hans Halvorson: Deep Beauty: Understanding the Quantum World Through Mathematical Innovation. Cambridge University Press, pp. 365–392, doi:10.1017/CBO9780511976971.011.
  24. Giacomo Mauro D'Ariano (2006): How to Derive the Hilbert Space Formulation of Quantum Mechanics From Purely Operational Axioms. In: Quantum Mechanics: Are There Quantum Jumps? - and On the Present Status of Quantum Mechanics, AIP Conference Proceedings 844. American Institute of Physics Melville, NY, pp. 101–128, doi:10.1063/1.2219356.
  25. Giacomo Mauro D'Ariano (2010): Probabilistic theories: what is special about quantum mechanics. In: Alisa Bokulich & Gregg Jaeger: Philosophy of quantum information and entanglement. Cambridge University Press, Cambridge, pp. 85–126, doi:10.1017/CBO9780511676550.007.
  26. Israel Moiseevich Gelfand & Mark Aronovich Naimark (1943): On the imbedding of normed rings into the ring of operators in Hilbert space. Matematiceskij sbornik 54(2), pp. 197–217.
  27. Lucien Hardy (2001): Quantum theory from five reasonable axioms. quant-ph/0101012.
  28. Lucien Hardy (2011): Reformulating and reconstructing quantum theory. arXiv:1104.2066.
  29. Lucien Hardy (2013): A formalism-local framework for general probabilistic theories, including quantum theory. Mathematical Structures in Computer Science 23(02), pp. 399–440, doi:10.1017/S0960129512000163.
  30. Lluís Masanes & Markus P Müller (2011): A derivation of quantum theory from physical requirements. New Journal of Physics 13(6), pp. 063001, doi:10.1088/1367-2630/13/6/063001.
  31. Mark Naimark (1940): Spectral functions of a symmetric operator. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 4(3), pp. 277–318.
  32. Masanao Ozawa (1984): Quantum measuring processes of continuous observables. Journal of Mathematical Physics 25(1), pp. 79–87, doi:10.1063/1.526000.
  33. Vern Paulsen (2002): Completely bounded maps and operator algebras 78. Cambridge University Press, doi:10.1017/CBO9780511546631.
  34. Irving Ezra Segal (1947): Irreducible representations of operator algebras. Bulletin of the American Mathematical Society 53(2), pp. 73–88, doi:10.1090/S0002-9904-1947-08742-5.
  35. Peter Selinger (2007): Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  36. Peter Selinger (2011): A Survey of Graphical Languages for Monoidal Categories. In: Bob Coecke: New Structures for Physics, Lecture Notes in Physics 813, doi:10.1007/978-3-642-12821-9_4.
  37. William Forrest Stinespring (1955): Positive functions on C*-algebras. Proceedings of the American Mathematical Society 6(2), pp. 211–216, doi:10.1090/S0002-9939-1955-0069403-4.
  38. Alexander Wilce (2000): Test spaces and orthoalgebras. In: Bob Coecke, David Moore & Alexander Wilce: Current research in operational quantum logic. Springer, pp. 81–114, doi:10.1007/978-94-017-1201-9_4.
  39. Alexander Wilce (2009): Test spaces. In: Kurt Engesser, Dov M. Gabbay & Daniel Lehmann: Handbook of quantum logic and quantum structures: quantum logic. Elsevier, pp. 443–550, doi:10.1016/B978-0-444-52869-8.500141.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org