1. Samson Abramsky & Bob Coecke (2008): Categorical quantum mechanics. In: Handbook of quantum logic and quantum structures: quantum logic. Elsevier, pp. 261–324, doi:10.1016/B978-0-444-52869-8.50010-4.
  2. Samson Abramsky & Chris Heunen (2012): H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics. Clifford Lectures 71, pp. 1–24.
  3. Rejandra Bhatia (2007): Positive definite matrices. Princeton University Press.
  4. Rob Clifton, Jeffrey Bub & Hans Halvorson (2003): Characterizing quantum theory in terms of information-theoretic constraints. Foundations of Physics 33(11), pp. 1561–1591, doi:10.1023/A:1026056716397.
  5. Bob Coecke (2008): Axiomatic Description of Mixed States From Selinger's CPM-construction. Electronic Notes in Theoretical Computer Science 210, pp. 3–13, doi:10.1016/j.entcs.2008.04.014.
  6. Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Diagrammatics. New Journal of Physics 13, pp. 043016, doi:10.1088/1367-2630/13/4/043016.
  7. Bob Coecke & Chris Heunen (2011): Pictures of complete positivity in arbitrary dimension. In: Proceedings of QPL, pp. 29–37, doi:10.4204/EPTCS.95.4.
  8. Bob Coecke, Chris Heunen & Aleks Kissinger (2013): Categories of Classical and Quantum Channels. arXiv:1305.3821.
  9. Bob Coecke, Éric O. Paquette & Duško Pavlovi\'c (2010): Classical and quantum structuralism. In: S. Gay & I. Mackey: Semantic Techniques in Quantum Computation. Cambridge University Press, pp. 29–69.
  10. Bob Coecke, Duško Pavlovi\'c & Jamie Vicary (2012): A new description of orthogonal bases. Mathematical Structures in Computer Science 23(3), pp. 555–567, doi:10.1017/S0960129512000047.
  11. Bob Coecke & Simon Perdrix (2010): Environment and classical channels in categorical quantum mechanics. In: CSL'10/EACSL'10. Springer, pp. 230–244, doi:10.1007/978-3-642-15205-4_20.
  12. Kenneth R. Davidson (1991): C*-algebras by example. American Mathematical Society.
  13. Chris Heunen (2012): Complementarity in categorical quantum mechanics. Foundations of Physics 42(7), pp. 856–873, doi:10.1007/s10701-011-9585-9.
  14. Chris Heunen, Ivan Contreras & Alberto S. Cattaneo (2012): Relative Frobenius algebras are groupoids. Journal of Pure and Applied Algebra 217, pp. 114–124, doi:10.1016/j.jpaa.2012.04.002.
  15. Michael Keyl (2002): Fundamentals of quantum information theory. Physical Reports 369, pp. 431–548, doi:10.1016/S0370-1573(02)00266-1.
  16. Michael Keyl & Reinhard F. Werner (2007): Channels and maps. In: Dagmar Bruß & Gerd Leuchs: Lectures on Quantum Information. Wiley-VCH, pp. 73–86, doi:10.1002/9783527618637.ch5.
  17. Vern Paulsen (2002): Completely bounded maps and operators algebras. Cambridge University Press.
  18. Peter Selinger (2007): Dagger compact closed categories and completely positive maps. In: QPL, ENTCS 170. Elsevier, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  19. Peter Selinger (2008): Idempotents in dagger categories. In: QPL, ENTCS 170. Elsevier, pp. 107–122, doi:10.1016/j.entcs.2008.04.021.
  20. Peter Selinger (2010): A survey of graphical languages for monoidal categories. In: New Structures for Physics, Lecture Notes in Physics 813. Springer, pp. 289–355, doi:10.1007/978-3-642-12821-9_4.
  21. Jamie Vicary (2011): Categorical formulation of finite-dimensional quantum algebras. Communications in Mathematical Physics 304(3), pp. 765–796, doi:10.1007/s00220-010-1138-0.
  22. Jamie Vicary (2012): Higher quantum theory. Preprint, arXiv:1207.4563.

Comments and questions to:
For website issues: