1. Samson Abramsky, Richard Blute & Prakhash Panangaden (1999): Nuclear and trace ideals in tensored *-categories. Journal of Pure and Applied Algebra 143, pp. 3–47, doi:10.1016/S0022-4049(98)00106-6.
  2. Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. In: Logic in Computer Science 19. IEEE Computer Society, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  3. Bob Coecke (2007): Complete positivity without positivity and without compactness. Technical Report PRG-RR-07-05. Oxford University Computing Laboratory. Available at
  4. Bob Coecke (2007): De-linearizing Linearity: Projective Quantum Axiomatics From Strong Compact Closure. Electronic Notes in Theoretical Computer Science 170, pp. 49–72, doi:10.1016/j.entcs.2006.12.011.
  5. Bob Coecke (2008): Axiomatic Description of Mixed States From Selinger's CPM-construction. Electronic Notes in Theoretical Computer Science 210, pp. 3–13, doi:10.1016/j.entcs.2008.04.014.
  6. Bob Coecke & Éric O. Paquette (2008): POVMs and Naimark's theorem without sums. In: QPL IV, ENTCS 210, pp. 15–31, doi:10.1016/j.entcs.2008.04.015.
  7. Bob Coecke & Duško Pavlovi\'c (2007): Quantum measurements without sums. In: Mathematics of Quantum Computing and Technology. Taylor and Francis, pp. 559–596. Available at arXiv:quant-ph/0608035.
  8. Bob Coecke & Simon Perdrix (2010): Environment and classical channels in categorical quantum mechanics. In: CSL'10/EACSL'10. Springer, pp. 230–244. Available at
  9. John B. Conway (2000): A course in operator theory. American Mathematical Society.
  10. Jacques Dixmier (1969): Von Neumann algebras. North-Holland.
  11. Chris Heunen (2008): Compactly accessible categories and quantum key distribution. Logical Methods in Computer Science 4(4), doi:10.2168/LMCS-4(4:9)2008.
  12. Chris Heunen (2009): An embedding theorem for Hilbert categories. Theory and Applications of Categories 22(13), pp. 321–344. Available at
  13. Chris Heunen & Sergio Boixo (2011): Completely positive classical structures and sequentializable quantum protocols. In: QPL VIII.
  14. Alexander S. Holevo (2001): Statistical structure of quantum theory. Springer.
  15. A. Joyal & R. Street (1991): The geometry of tensor calculus I. Advances in Mathematics 88, pp. 55–112, doi:10.1016/0001-8708(91)90003-P.
  16. G. Max Kelly & Miguel L. Laplaza (1980): Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, pp. 193–213, doi:10.1016/0022-4049(80)90101-2.
  17. Vern Paulsen (2002): Completely bounded maps and operators algebras. Cambridge University Press.
  18. Peter Selinger (2007): Dagger compact closed categories and completely positive maps. In: Quantum Programming Languages, ENTCS 170. Elsevier, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  19. Peter Selinger (2010): A survey of graphical languages for monoidal categories. In: New Structures for Physics, Lecture Notes in Physics 813. Springer, pp. 289–355.
  20. W. Forrest Stinespring (1955): Positive functions on C*-algebras. Proceedings of the American Mathematical Society 6(2), pp. 211–216.
  21. Masamichi Takesaki (1979): Theory of Operator Algebra I. Encyclopaedia of Mathematical Sciences. Springer.

Comments and questions to:
For website issues: