1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Logic in Computer Science, 2004. Proceedings of the 19th Annual IEEE Symposium on. IEEE, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  2. B. Coecke & R. Duncan (2008): Interacting quantum observables. ICALP. Automata, Languages and Programming, pp. 298–310, doi:10.1007/978-3-540-70583-3_25.
  3. B. Coecke & R. Duncan (2011): Interacting quantum observables: Categorical algebra and diagrammatics. New Journal of Physics 13, pp. 043016, doi:10.1088/1367-2630/13/4/043016.
  4. B. Coecke & B. Edwards (2011): Three qubit entanglement within graphical Z/X-calculus.
  5. B. Coecke & B. Edwards (2011): Toy quantum categories. Electronic Notes in Theoretical Computer Science 270(1), pp. 29–40, doi:10.1016/j.entcs.2011.01.004.
  6. B. Coecke, B. Edwards & R.W. Spekkens (2011): Phase groups and the origin of non-locality for qubits. Electronic Notes in Theoretical Computer Science 270(2), pp. 15–36, doi:10.1016/j.entcs.2011.01.021.
  7. B. Coecke & A. Kissinger (2010): The compositional structure of multipartite quantum entanglement. ICALP. Automata, Languages and Programming, pp. 297–308, doi:10.1007/978-3-642-14162-1_25.
  8. B. Coecke & S. Perdrix (2010): Environment and classical channels in categorical quantum mechanics. In: Computer Science Logic. Springer, pp. 230–244, doi:10.1007/978-3-642-15205-4_20.
  9. B. Coecke, S. Perdrix & É.O. Paquette (2008): Bases in diagrammatic quantum protocols. Electronic Notes in Theoretical Computer Science 218, pp. 131–152, doi:10.1016/j.entcs.2008.10.009.
  10. Lucas Dixon & Aleks Kissinger (2010): Open Graphs and Monoidal Theories.
  11. R. Duncan & S. Perdrix (2009): Graph states and the necessity of Euler decomposition. Mathematical Theory and Computational Practice, pp. 167–177, doi:10.1007/978-3-642-03073-4_18.
  12. R. Duncan & S. Perdrix (2010): Rewriting measurement-based quantum computations with generalised flow. ICALP. Automata, Languages and Programming, pp. 285–296, doi:10.1007/978-3-642-14162-1_24.
  13. A. Hillebrand (2011): Quantum Protocols involving Multiparticle Entanglement and their Representations in the zx-calculus. University of Oxford MSc thesis.
  14. Clare Horsman (2011): Quantum picturalism for topological cluster-state computing. New Journal of Physics 13(9), pp. 095011, doi:10.1088/1367-2630/13/9/095011.
  15. C. Kassel (1995): Quantum groups 155. Springer, doi:10.1007/978-1-4612-0783-2.
  16. Joachim Kock (2003): Frobenius Algebras and 2-D Topological Quantum Field Theories. Cambridge University Press, doi:10.1017/CBO9780511615443.
  17. S. Mac Lane (1998): Categories for the working mathematician. Springer.
  18. M. Van den Nest, J. Dehaene & B. De Moor (2004): Graphical description of the action of local Clifford transformations on graph states. Physical Review A 69(2), pp. 9422, doi:10.1103/PhysRevA.69.022316.
  19. M.A. Nielsen & I. Chuang (2000): Quantum computation and quantum information.
  20. P. Selinger (2007): Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  21. Robert W. Spekkens (2007): Evidence for the epistemic view of quantum states: A toy theory. Phys. Rev. A 75, pp. 032110, doi:10.1103/PhysRevA.75.032110.
  22. Ross Street (2004): Frobenius monads and pseudomonoids. Journal of Mathematical Physics 45(10), pp. 3930–3948, doi:10.1063/1.1788852.
  23. Pawel Wocjan & Thomas Beth (2005): New construction of mutually unbiased bases in square dimensions. Quantum Information & Computation 5(2), pp. 93–101. Available at

Comments and questions to:
For website issues: