1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Logic in Computer Science, 2004. Proceedings of the 19th Annual IEEE Symposium on, pp. 415 – 425, doi:10.1109/LICS.2004.1319636.
  2. C. Bennett (1992): Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68(21), pp. 3121–3124, doi:10.1103/PhysRevLett.68.3121.
  3. C. Bennett & G. Brassard (1984): Quantum cryptography: Public key distribution and coin tossing, pp. 175–179 175. Bangalore, India, doi:10.1016/j.tcs.2011.08.039. Available at
  4. C. Bennett, G. Brassard & N. Mermin (1992): Quantum cryptography without Bell's theorem. Physical Review Letters 68(5), pp. 557–559, doi:10.1103/PhysRevLett.68.557.
  5. C. Bennett & S. Wiesner (1992): Communication via one- and two-particle operators on Einstein-Podolsky-łinebreak Rosen states. Phys. Rev. Lett. 69(20), pp. 2881–2884, doi:10.1103/PhysRevLett.69.2881.
  6. D. Bruss, A. Ekert, S. F. Huelga, J.-W. Pan & A. Zeilinger (1997): Quantum Computing with Controlled-Not and Few Qubits 355. The Royal Society, doi:10.1098/rsta.1997.0124. Available at
  7. J. L. Cereceda (2001): Quantum Dense coding using three qubits. ArXiv Quantum Physics e-prints. Available at
  8. R. Cleve, D. Gottesman & H.-K. Lo (1999): How to share a quantum secret. Physical Review Letters 83, pp. 648–651, doi:10.1103/PhysRevLett.83.648. Available at
  9. B. Coecke (2006): Kindergarten Quantum Mechanics: Lecture Notes. AIP Conference Proceedings 810(1), pp. 81–98, doi:10.1063/1.2158713. Available at
  10. B. Coecke (2010): Quantum Picturalism. Contemporary Physics 51, pp. 59–83. Available at
  11. B. Coecke & R. Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(4), pp. 043016, doi:10.1088/1367-2630/13/4/043016. Available at
  12. B. Coecke & B. Edwards (2010): Three qubit entanglement within graphical Z/X-calculus. In: HPC, pp. 22–33. Available at
  13. B. Coecke & S. Perdrix (2010): Environment and classical channels in categorical quantum mechanics. In: Proceedings of the 24th international conference/19th annual conference on Computer science logic, CSL'10/EACSL'10. Springer-Verlag, pp. 230–240, doi:10.1007/978-3-642-15205-4 20. Available at
  14. F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou & H.-Y. Zhou (2005): Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Physical Review A 72(4), pp. 044301, doi:10.1103/PhysRevA.72.044301.
  15. W. Dür, G. Vidal & J. I. Cirac (2000): Three qubits can be entangled in two inequivalent ways. Physical Review A 62(6), pp. 062314, doi:10.1103/PhysRevA.62.062314.
  16. A. Ekert (1991): Quantum cryptography based on Bell's theorem. Physical Review Letters 67(6), pp. 661–663, doi:10.1103/PhysRevLett.67.661.
  17. V. N. Gorbachev, A. I. Trubilko, A. I. Zhiliba & E. S. Yakovleva (2000): Teleportation of entangled states and dense coding using a multiparticle quantum channel. Technical Report. Available at
  18. A. M. Hillebrand (2011): Quantum Protocols involving Multiparticle Entanglement and their Representationsłinebreak in the ZX-calculus. University of Oxford. Available at
  19. H. Imai, J. Mueller-Quade, A. C. A. Nascimento, P. Tuyls & A. Winter (2003): A Quantum Information Theoretical Model for Quantum Secret Sharing Schemes. ArXiv Quantum Physics e-prints. Available at
  20. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter & A. Zeilinger (2000): Quantum Cryptography with Entangled Photons. Physical Review Letters 84(20), pp. 4729–4732, doi:10.1103/PhysRevLett.84.4729.
  21. J. Joo, J. Lee, J. Jang & Y.-J. Park (2002): Quantum secure Communication via W states. ArXiv Quantum Physics e-prints. Available at
  22. A. Joyal & R. Street (1991): The geometry of tensor calculus, I. Advances in Mathematics 88(1), pp. 55 – 112, doi:10.1016/0001-8708(91)90003-P. Available at
  23. A. Kissinger (2009): Exploring a Quantum Theory with Graph Rewriting and Computer Algebra. In: J. Carette, L. Dixon, C. Coen & S. Watt: Intelligent Computer Mathematics, Lecture Notes in Computer Science 5625. Springer Berlin / Heidelberg, pp. 90–105, doi:10.1007/978-3-642-02614-0_12.
  24. A. Kissinger, A. Merry, B. Frot, L. Dixon, M. Soloviev & R. Duncan (2008-present): Quantomatic. Available at
  25. H.-K. Lo, X. Ma & K. Chen (2005): Decoy State Quantum Key Distribution. Physical Review Letters 94(23), doi:10.1103/PhysRevLett.94.230504.
  26. A. Nascimento, J. Mueller-Quade & H. Ima (2001): Improving quantum secret-sharing schemes. Physical Review A 64, doi:10.1103/PhysRevA.64.042311.
  27. R. Penrose (1971): Application of negative dimensional tensors.. Combinatorial Mathematics and its Applications, pp. 221–244.. Available at
  28. K. Rietjens (2004): Quantum Secret Sharing Schemes. Technische Universiteit Eindhoven. Available at
  29. P. Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps. Electronic Notes in Theoretical Computer Science (ENTCS) 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018. Available at
  30. S. Singh & R. Srikanth (2005): Generalized quantum secret sharing. Phys. Rev. A 71, doi:10.1103/PhysRevA.71.012328. Available at
  31. C. Wang, F. Deng & G. Long (2005): Multi-step quantum secure direct communication using multi-particlełinebreak Green-Horne-Zeilinger state. Optics Communications 253(1-3), pp. 15 – 20, doi:10.1016/j.optcom.2005.04.048. Available at

Comments and questions to:
For website issues: