References

  1. Yehia Abd Alrahman, Rocco De Nicola, Michele Loreti, Francesco Tiezzi & Roberto Vigo (2015): A Calculus for Attribute-based Communication. In: Proceedings of SAC 2015, doi:10.1145/2695664.2695668. To appear.
  2. Marco Bernardo & Roberto Gorrieri (1998): A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time. Theoretical Computer Science 202(1-2), pp. 1–54, doi:10.1016/S0304-3975(97)00127-8.
  3. H.C. Bohnenkamp, P.R. D'Argenio, H. Hermanns & J-P. Katoen (2006): MODEST: A Compositional Modeling Formalism for Hard and Softly Timed Systems. IEEE Trans. Software Eng. 32(10), pp. 812–830, doi:10.1109/TSE.2006.104.
  4. Luca Bortolussi & Alberto Policriti (2010): Hybrid dynamics of stochastic programs. Theor. Comput. Sci. 411(20), pp. 2052–2077, doi:10.1016/j.tcs.2010.02.008.
  5. Federica Ciocchetta & Jane Hillston (2009): Bio-PEPA: A Framework for the Modelling and Analysis of Biological Systems. Theoretical Computer Science 410(33), pp. 3065–3084, doi:10.1016/j.tcs.2009.02.037.
  6. Paola De Maio (2009): Bike-sharing: Its History, Impacts, Models of Provision, and Future.. Journal of Public Transportation 12(4), pp. 41–56, doi:10.5038/2375-0901.12.4.3.
  7. Rocco De Nicola, Diego Latella, Michele Loreti & Mieke Massink (2013): A uniform definition of stochastic process calculi. ACM Comput. Surv. 46(1), pp. 5, doi:10.1145/2522968.2522973.
  8. Rocco De Nicola, Michele Loreti, Rosario Pugliese & Francesco Tiezzi (2014): A Formal Approach to Autonomic Systems Programming: The SCEL Language. TAAS 9(2), pp. 7, doi:10.1145/2619998.
  9. Cheng Feng & Jane Hillston (2014): PALOMA: A Process Algebra for Located Markovian Agents. In: Quantitative Evaluation of Systems - 11th International Conference, QEST 2014, Florence, Italy, September 8-10, 2014. Proceedings, Lecture Notes in Computer Science 8657. Springer, pp. 265–280, doi:10.1007/978-3-319-10696-0_22.
  10. Daniel T Gillespie (1976): A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), pp. 403 – 434, doi:10.1016/0021-9991(76)90041-3.
  11. Holger Hermanns, Ulrich Herzog & Joost-Pieter Katoen (2002): Process algebra for performance evaluation. Theor. Comput. Sci. 274(1-2), pp. 43–87, doi:10.1016/S0304-3975(00)00305-4.
  12. Holger Hermanns & Michael Rettelbach (1994): Syntax, Semantics, Equivalences and Axioms for MTIPP. In: U. Herzog & M. Rettelbach: Proc. of 2nd Process Algebra and Performance Modelling Workshop.
  13. Jane Hillston (1995): A Compositional Approach to Performance Modelling. CUP.
  14. Diego Latella, Michele Loreti, Mieke Massink & Valerio Senni (2014): Stochastically timed predicate-based communication primitives for autonomic computing. In: Nathalie Bertrand & Luca Bortolussi: Proceedings Twelfth International Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL 2014, Grenoble, France, 12-13 April 2014., EPTCS 154, pp. 1–16, doi:10.4204/EPTCS.154.1.
  15. Corrado Priami (1995): Stochastic π-calculus. The Computer Journal 38(7), pp. 578–589, doi:10.1093/comjnl/38.7.578.
  16. Mirco Tribastone, Stephen Gilmore & Jane Hillston (2012): Scalable Differential Analysis of Process Algebra Models. IEEE Transactions on Software Engineering 38(1), pp. 205–219, doi:10.1109/TSE.2010.82.
  17. Wikipedia (2013): Bicycle sharing system — Wikipedia, The Free Encyclopedia. Available at http://en.wikipedia.org/w/index.php?title=Bicycle_sharing_system&oldid=573165089. [Online; accessed 17-September-2013].

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org