1. Apache Commons Math Java Library. Available at
  2. M. Ajmone Marsan, M. Gribaudo, M. Meo & M. Sereno (2001): On Petri Net-based modeling paradigms for the performance analysis of wireless Internet accesses. In: 9th International Workshop on Petri Nets and Performance Models, pp. 19–28, doi:10.1109/PNPM.2001.953352.
  3. R. Bakhshi, L. Cloth, W. Fokkink & B.R. Haverkort (2011): Mean-field framework for performance evaluation of push-pull gossip protocols. Performance Evaluation 68, pp. 157–179, doi:10.1016/j.peva.2010.08.025.
  4. D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda & R.R.H. Schiffelers (2006): Syntax and consistent equation semantics of hybrid \voidb@x 14.418χ. Journal of Logic and Algebraic Programming 68, pp. 129–210, doi:10.1016/j.jlap.2005.10.005.
  5. M. Bena\"ım & J.-Y. Le Boudec (2008): A class of mean field interaction models for computer and communication systems. Performance Evaluation 65, pp. 823–838, doi:10.1016/j.peva.2008.03.005.
  6. J.A. Bergstra & C.A. Middelburg (2005): Process algebra for hybrid systems. Theoretical Computer Science 335, pp. 215–280, doi:10.1016/j.tcs.2004.04.019.
  7. L. Bortolussi, V. Galpin & J. Hillston (2011): HYPE with stochastic events. In: QAPL 2011, EPTCS 57, pp. 120–133, doi:10.4204/EPTCS.57.9.
  8. L. Bortolussi & A. Policriti (2009): Hybrid semantics of stochastic programs with dynamic reconfiguration. In: COMPMOD 2009, EPTCS 6, pp. 63–76, doi:10.4204/EPTCS.6.5.
  9. J. Burgess, B. Gallagher, D. Jensen & B.N. Levine (2006): MaxProp: Routing for vehicle-based disruption-tolerant networks. In: INFOCOM 2006, pp. 1–11, doi:10.1109/INFOCOM.2006.228.
  10. P.J.L. Cuijpers & M.A. Reniers (2005): Hybrid process algebra. Journal of Logic and Algebraic Programming 62, pp. 191–245, doi:10.1016/j.jlap.2004.02.001.
  11. M.H.A. Davis (1993): Markov Models and Optimization. Chapman & Hall.
  12. N.A. Deepak, R. Thareja & N.A. Nikhil (2008): Performance analysis and evaluation of delay-tolerant network bundling protocol on a scalable virtual network test platform. In: IET International Conference on Wireless, Mobile and Multimedia Networks, 2008, pp. 52 –55, doi:10.1049/cp:20080143.
  13. M.B. Elowitz & S. Leibler (2000): A synthetic oscillatory network of transcriptional regulators. Nature 403, pp. 335–338, doi:10.1038/35002125.
  14. M. Fadlisyah, P.C. Ölveczky & E. Ábrahám (2011): Object-oriented formal modeling and analysis of interacting hybrid systems in HI-Maude. In: SEFM 2011, LNCS 7041, pp. 415–430, doi:10.1007/978-3-642-24690-6_29.
  15. R. Gaeta, M. Gribaudo, D. Manini & M. Sereno (2005): Fluid stochastic Petri nets for computing transfer time distributions in peer-to-peer file sharing applications. ENTCS 128, pp. 79–99, doi:10.1016/j.entcs.2005.01.014.
  16. V. Galpin, L. Bortolussi & J. Hillston: HYPE: Hybrid modelling by composition of flows, doi:10.1007/s00165-011-0189-0. Formal Aspects of Computing, to appear.
  17. V. Galpin, L. Bortolussi & J. Hillston (2009): HYPE: a process algebra for compositional flows and emergent behaviour. In: CONCUR 2009, LNCS 5710, pp. 305–320, doi:10.1007/978-3-642-04081-8_21.
  18. V. Galpin, J. Hillston & L. Bortolussi (2008): HYPE applied to the modelling of hybrid biological systems. ENTCS 218, pp. 33–51, doi:10.1016/j.entcs.2008.10.004.
  19. M. Garetto & M. Gribaudo (2006): Performance analysis of delay tolerant networks with model checking techniques. In: QEST 2006, pp. 73–82, doi:10.1109/QEST.2006.42.
  20. T.A. Henzinger & P.-H. Ho (1995): HYTECH: The Cornell HYbrid TECHnology Tool. In: Hybrid Systems II, LNCS 999, pp. 265–293, doi:10.1007/3-540-60472-3_14.
  21. G. Horton, V.G. Kulkarni, D.M. Nicol & K.S. Trivedi (1998): Fluid stochastic Petri nets: Theory, applications, and solution techniques. European Journal of Operational Research 105, pp. 184 – 201, doi:10.1016/S0377-2217(97)00028-3.
  22. C.-M. Huang, K.-C. Lan & C.-Z. Tsai (2008): A survey of opportunistic networks. In: AINA 2008, pp. 1672–1677, doi:10.1109/WAINA.2008.292.
  23. S. Jain, K.R. Fall & R.K. Patra (2004): Routing in a delay tolerant network. In: ACM SIGCOMM 2004, pp. 145–158, doi:10.1145/1015467.1015484.
  24. S. Jain, R. Shah, W. Brunette, G. Borriello & S. Roy (2006): Exploiting mobility for energy efficient data collection in wireless sensor networks. MONET 11, pp. 327–339, doi:10.1007/s11036-006-5186-9.
  25. P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh & Daniel Rubenstein (2002): Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet. ACM SIGPLAN Notices 37, pp. 96–107, doi:10.1145/605397.605408.
  26. A. Keränen, T. Kärkkäinen & J. Ott (2010): Simulating mobility and DTNs with the ONE. Journal of Communications 5, pp. 92–105, doi:10.4304/jcm.5.2.92-105.
  27. G.Y. Keung, B. Li & Q. Zhang (2011): Message delivery capacity in delay-constrained mobile sensor networks: Bounds and realization. IEEE Transactions on Wireless Communications 10, pp. 1552–1559, doi:10.1109/TWC.2011.030911.100827.
  28. U. Khadim (2006): A comparative study of process algebras for hybrid systems. Report CSR 06-23. Technische Universiteit Eindhoven.
  29. C. Kiddle, R. Simmonds, C. Williamson & B. Unger (2003): Hybrid packet/fluid flow network simulation. In: PADS 2003, pp. 143 – 152, doi:10.1109/PADS.2003.1207430.
  30. A. Lindgren, A. Doria & O. Schelén (2003): Probabilistic routing in intermittently connected networks. Mobile Computing and Communications Review 7, pp. 19–20, doi:10.1145/961268.961272.
  31. A. Passarella, M. Kumar, M. Conti & E. Borgia (2011): Minimum-delay service provisioning in opportunistic networks. IEEE Transactions on Parallel and Distributed Systems 22, pp. 1267–1275, doi:10.1109/TPDS.2010.153.
  32. L. Pelusi, A. Passarella & M. Conti (2006): Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine 44, pp. 134–141, doi:10.1109/MCOM.2006.248176.
  33. A. Picu & T. Spyropoulos (2010): Distributed stochastic optimization in opportunistic networks: the case of optimal relay selection. In: CHANTS '10, pp. 21–28, doi:10.1145/1859934.1859939.
  34. W.C. Rounds & H. Song (2003): The Φ-Calculus: A language for distributed control of reconfigurable embedded systems. In: HSCC 2003, LNCS 2623, pp. 435–449, doi:10.1007/3-540-36580-X_32.
  35. J. Shen, S. Moh & I. Chen (2008): Routing protocols in delay tolerant networks: A comparative survey. In: 23rd International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC 2008), pp. 1577–1580.
  36. T. Small & Z.J. Haas (2003): The shared wireless infostation model: a new ad hoc networking paradigm (or where there is a whale, there is a way). In: MobiHoc 2003, pp. 233–244, doi:10.1145/778415.778443.
  37. T. Spyropoulos, K. Psounis & C.S. Raghavendra (2006): Performance analysis of mobility-assisted routing. In: MobiHoc 2006, pp. 49–60, doi:10.1145/1132905.1132912.
  38. B. Tuffin, D.S. Chen & K.S. Trivedi (2001): Comparison of hybrid systems and fluid stochastic Petri nets. Discrete Event Dynamic Systems: Theory and Applications 11, pp. 77–95, doi:10.1023/A:1008387132533.
  39. A. Vahdat & D. Becker (2000): Epidemic routing for partially connected ad hoc networks. Technical Report CS-2000-06. Duke University. Available at
  40. D. Wilkinson (2011): Stochastic Modelling for Systems Biology. Chapman & Hall/CRC.
  41. K. Xu, P. Hui, V.O.K. Li, J. Crowcroft, V. Latora & P. Lio (2009): Impact of altruism on opportunistic communications. In: First International Conference on Ubiquitous and Future Networks, ICUFN'09, pp. 153–158, doi:10.1109/ICUFN.2009.5174303.
  42. Z. Zhang (2006): Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Communications Surveys and Tutorials 8, pp. 24–37, doi:10.1109/COMST.2006.323440.
  43. W. Zhao, M.H. Ammar & E.W. Zegura (2004): A message ferrying approach for data delivery in sparse mobile ad hoc networks. In: MobiHoc 2004, pp. 187–198, doi:10.1145/989459.989483.

Comments and questions to:
For website issues: