1. A. Aldini, M. Bernardo & F. Corradini (2009): A process algebraic approach to software architecture design. Springer-Verlag New York Inc.
  2. J.A. Bergstra & J.W. Klop (1984): Process algebra for synchronous communication. Information and Control 60(1-3), pp. 109–137, doi:10.1016/S0019-9958(84)80025-X.
  3. M. Bernardo & A. Aldini (2007): Weak Markovian bisimilarity: abstracting from prioritized/weighted internal immediate actions. In: Theoretical Computer Science: Proceedings of the 10th Italian Conference on ICTCS'07. World Scientific Pub Co Inc, pp. 39, doi:10.1142/9789812770998(0)0008.
  4. M. Bernardo, R. De Nicola & M. Loreti (2010): Uniform Labeled Transition Systems for Nondeterministic, Probabilistic, and Stochastic Processes. Trustworthly Global Computing, pp. 35–56, doi:10.1007/978-3-642-15640-3(0)3.
  5. M. Bernardo, L. Donatiello & R. Gorrieri (1994): MPA: a stochastic process algebra. University of Bologna.
  6. M. Bernardo & R. Gorrieri (1998): A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202(1-2), pp. 1–54, doi:10.1016/S0304-3975(97)00127-8.
  7. J.P. Buzen (1973): Computational Algorithms for Closed Queueing Networks with Exponential Servers. Communications of the ACM 16(9), pp. 527–531, doi:10.1145/362342.362345.
  8. R. De Nicola, J.P. Katoen, D. Latella, M. Loreti & M. Massink (2007): Model checking mobile stochastic logic. Theoretical Computer Science 382(1), pp. 42–70, doi:10.1145/362342.362345.
  9. R. De Nicola, D. Latella, M. Loreti & M. Massink (2009): Rate-based transition systems for stochastic process calculi. Automata, Languages and Programming, pp. 435–446, doi:10.1007/978-3-642-02930-1(0)36.
  10. N.M. van Dijk (1988): On Jackson's product form with jump-over blocking. Operations Research Letters 7(5), pp. 233–235, doi:10.1016/0167-6377(88)90037-5.
  11. N. Götz, U. Herzog & M. Rettelbach (1993): Multiprocessor and distributed system design: The integration of functional specification and performance analysis using stochastic process algebras. Performance evaluation of computer and communication systems, pp. 121–146, doi:10.1007/BFb0013851.
  12. P.G. Harrison (2004): Reversed processes, product forms and a non-product form. Linear Algebra and Its Applications 386, pp. 359–381, doi:10.1016/j.laa.2004.02.020.
  13. H. Hermanns (2002): Interactive markov chains. Springer, doi:10.1007/3-540-45804-2(0)5.
  14. H. Hermanns, M. Rettelbach & T. Weiss (1995): Formal characterisation of immediate actions in SPA with nondeterministic branching. The Computer Journal 38(7), pp. 530, doi:10.1093/comjnl/38.7.530.
  15. J. Hillston (1996): A compositional approach to performance modelling. Cambridge University Press.
  16. J. Hillston & N. Thomas (1999): Product form solution for a class of PEPA models. Performance Evaluation 35(3-4), pp. 171–192, doi:10.1016/S0166-5316(99)00005-X.
  17. C.A.R. Hoare (1978): Communicating sequential processes. Communications of the ACM 21(8), pp. 677, doi:10.1145/357980.358021.
  18. H.S. Lee & S.M. Pollock (1989): Approximate analysis for the merge configuration of an open queueing network with blocking. IIE transactions 21(2), pp. 122–129, doi:10.1080/07408178908966215.
  19. R. Milner (1989): Communication and concurrency. Prentice Hall International Series in Computer Science.
  20. C. Priami (1995): Stochastic π-calculus. The Computer Journal 38(7), pp. 578.
  21. M.G. Vigliotti & P.G. Harrison (2006): Stochastic ambient calculus. Electronic Notes in Theoretical Computer Science 164(3), pp. 169–186, doi:10.1016/j.entcs.2006.07.018.

Comments and questions to:
For website issues: