1. A. Arkin, J. Ross & H. H. McAdams (1998): Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Phage λ-Infected Escherichia coli Cells.. Genetics 149, pp. 1633–1648.
  2. M. Arns, P. Buchholz & A. Panchenko (2010): On the numerical Analysis of Inhomogeneous Continuous Time Markov Chains.. INFORMS Journal on Computing 22, pp. 416–432, doi:10.1287/ijoc.1090.0357.
  3. G. Ciardo (1995): Discrete-time Markovian stochastic Petri nets. Kluwer.
  4. F. Didier, T. A. Henzinger, M. Mateescu & V. Wolf (2009): Fast Adaptive Uniformization of the Chemical Master Equation. In: Proc. of HIBI, pp. 118–127, doi:10.1109/HiBi.2009.23.
  5. N.M. van Dijk (1992): Uniformization for nonhomogeneous Markov chains. Operations research letters 12(5), pp. 283–291, doi:10.1016/0167-6377(92)90086-I.
  6. S. Engblom (2006): Computing the moments of high dimensional solutions of the master equation.. Appl. Math. Comput. 180, pp. 498–515, doi:10.1016/j.amc.2005.12.032.
  7. D. T. Gillespie (1976): A General Method for Numerically Simulating the Time Evolution of Coupled Chemical Reactions.. J. Comput. Phys. 22, pp. 403–434, doi:10.1016/0021-9991(76)90041-3.
  8. D. T. Gillespie (1977): Exact Stochastic Simulation of Coupled Chemical Reactions.. J. Phys. Chem. 81(25), pp. 2340–2361, doi:10.1021/j100540a008.
  9. W. K. Grassmann (1990): Computational methods in probability theory.. In: D. P. Heyman & M. J. Sobel: Stochastic Models, chapter 5, Handbooks in Operations Research and Management Science 2. Elsevier, pp. 199–254, doi:10.1016/S0927-0507(05)80169-0.
  10. A. Jensen (1953): Markoff chains as an aid in the study of Markoff processes. Skandinavisk Aktuarietidskrift 36, pp. 87–91.
  11. J. F. C. Kingman (1969): Markov Population Processes. Journal of Applied Probability 6(1), pp. 1–16.
  12. A. Loinger, A. Lipshtat, N. Q. Balaban & O. Biham (2007): Stochastic simulations of genetic switch systems. Phys. Rev. E 75(2), pp. 021904, doi:10.1103/PhysRevE.75.021904.
  13. A. P. A. van Moorsel & K. Wolter (1998): Numerical Solution of Non-Homogeneous Markov Processes through Uniformization. In: Proc. of the European Simulation Multiconference - Simulation. SCS Europe, pp. 710–717.
  14. E. de Souza e Silva & P. M. Ochoa (1992): State Space Exploration in Markov Models. In: SIGMETRICS, pp. 152–166, doi:10.1145/133057.133100.
  15. W. J. Stewart (1995): Introduction to the Numerical Solution of Markov Chains.. Princeton University Press.
  16. M. Thattai & A. van Oudenaarden (2001): Intrinsic noise in gene regulatory networks.. PNAS, USA 98(15), pp. 8614–8619, doi:10.1073/pnas.151588598.
  17. O. Wolkenhauer, M. Ullah, W. Kolch & K. Cho (2004): Modeling and Simulation of Intracellular Dynamics: Choosing an Appropriate Framework.. IEEE Transactions on NanoBioscience 3(3), pp. 200–207, doi:10.1109/TNB.2004.833694.

Comments and questions to:
For website issues: