1. Carlton M Caves, Christopher M Fuchs & Ruediger Schack (2002): Quantum probabilities as Bayesian probabilities. Physical Review A 65, doi:10.1103/PhysRevA.65.022305.
  2. Adam Elga (2000): Self-locating belief and the Sleeping Beauty problem. Analysis 60(2), pp. 143–147, doi:10.1093/analys/60.2.143.
  3. Hugh Everett III (1957): 'Relative state' formulation of quantum mechanics. Reviews of Modern Physics 29, pp. 454–462, doi:10.1103/RevModPhys.29.454.
  4. A Gleason (1957): Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics 6(6), pp. 885–893, doi:10.1512/iumj.1957.6.56050.
  5. S Gutmann (1995): Using classical probability to guarantee properties of infinite quantum sequences. Physical Review A 52(5), pp. 3560–3562, doi:10.1103/PhysRevA.52.3560. Available at
  6. J B Hartle (1968): Quantum Mechanics of Individual Systems. American Journal of Physics 36(8), pp. 704–712, doi:10.1119/1.1975096.
  7. Pierre Simon Marquis de Laplace (1902): A Philosophical Essay on Probabilities (1814). John Wiley & Sons, New York.
  8. Gottfried Wilhelm von Leibniz (2006): Estimating the Uncertain (1678). In: Marcelo Dascal: The Art of Controversies. Springer, pp. 105–118, doi:10.1007/1-4020-5228-6.
  9. David Lewis (2001): Sleeping Beauty. Analysis 61(3), pp. 171–187, doi:10.1093/analys/61.3.171.
  10. Peter J Lewis (2007): Quantum Sleeping Beauty. Analysis 67(293), pp. 59–65, doi:10.1111/j.1467-8284.2006.00597.x.
  11. Ming Li & P M B Vitányi (2008): An introduction to Kolmogorov complexity and its applications. Springer, New York, doi:10.1007/978-0-387-49820-1.
  12. Karl Popper (1959): The propensity interpretation of probability. The British Journal for the Philosophy of Science 10(37), pp. 25–42, doi:10.1093/bjps/X.37.25.
  13. Allan F Randall (2014): An Algorithmic Interpretation of Quantum Probability. York University, Toronto. Available at
  14. Allan F Randall (2016): Quantum Probability as an Application of Data Compression Principles. Electronic Proceedings in Theoretical Computer Science 214(12), pp. 29–40, doi:10.4204/EPTCS.214.6.
  15. Ray Solomonoff (1960): A Preliminary Report on a General Theory of Inductive Inference. Zator Company and United States Air Force Office of Scientific Research, ZTB-138, Cambridge. Available at
  16. Ray Solomonoff (1964): A formal theory of inductive inference: parts 1 and 2. Information and Control 7(1-2), pp. 1–22 & 224–254, doi:10.1016/S0019-9958(64)90131-7.
  17. Ray Solomonoff (1978): Complexity-based induction systems: comparisons and convergence theorems. IEEE Transactions on Information Theory 24(4), pp. 422–432, doi:10.1109/TIT.1978.1055913. Available at
  18. David Wallace (2010): How to prove the Born rule. In: S. Saunders, J. Barrett, A. Kent & D. Wallace: Many Worlds? Everett, Quantum Theory, and Reality. Oxford University Press, Oxford, pp. 227–263, doi:10.1093/acprof:oso/9780199560561.003.0010. Available at

Comments and questions to:
For website issues: