References

  1. S. Aaronson (2010): BQP and the polynomial hierarchy. In: STOC '10 Proceedings of the forty-second ACM symposium on Theory of computing, pp. 141, doi:10.1145/1806689.1806711.
  2. A. A. Abbott, C. S. Calude, M. J. Dinneen & R. Hua (2018): A Hybrid Quantum-Classical Paradigm to Mitigate Embedding Costs in Quantum Annealing. CDMTCS Research Report Series 520.
  3. S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis & M. Troyer (2014): Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, pp. 218, doi:10.1038/nphys2900.
  4. C. S. Calude, E. Calude & M. J. Dinneen (2015): Adiabatic Quantum Computing Challenges. ACM SIGACT News 46(1), pp. 40, doi:10.1145/2744447.2744459.
  5. C. S. Calude & M. J. Dinneen (2016): Solving the Broadcast Time Problem Using a D-Wave Quantum Computer. In: A. Adamatzky: Advances in Unconventional Computing, chapter 17, Emergence, Complexity and Computation 22. Springer International, Switzerland, pp. 439, doi:10.1007/978-3-319-33924-5_17.
  6. A. Cho (2014): Quantum or not, controversial computer yields no speedup. Science 344, pp. 1330, doi:10.1126/science.344.6190.1330.
  7. V. Choi (2008): Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Processing 7, pp. 193, doi:10.1007/s11128-008-0082-9.
  8. D-Wave Systems Inc. (2016): The D-Wave 2XQuantum Computer Technology Overview.
  9. D-Wave Systems Inc. (2016): Postprocessing Methods on D-Wave Systems. Tech. Report Release 2.4 09-1105A-B.
  10. D-Wave Systems Inc. (2017): Programming with QUBOs. Tech. Report Release 2.4 09-1002A-C.
  11. D-Wave Systems Inc. (2017): The D-Wave 2000QQuantum Computer Technology Overview.
  12. V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis & H. Neven (2016): What is the Computational Value of Finite-Range Tunneling?. Phys. Rev. X 6, pp. 031015, doi:10.1103/PhysRevX.6.031015.
  13. E. Farhi, J. Goldstone, S. Gutman & M. Sipser (2000): Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/0001106.
  14. M. R. Garey & D. S. Johnson (1979): Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, San Francisco.
  15. L. K. Grover (1996): A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212, doi:10.1145/237814.237866.
  16. I. Hen, J. Job, T. Albash, T. F. Rønnow, M. Troyer & D. A. Lidar (2015): Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, pp. 042325, doi:10.1103/PhysRevA.92.042325.
  17. M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson & G. Rose (2011): Quantum annealing with manufactured spins. Nature 473, pp. 194, doi:10.1038/nature10012.
  18. A. D. King, T. Lanting & R. Harris (2015): Performance of a quantum annealer on range-limited constraint satisfaction problems. arXiv:1502.02098 [quant-ph].
  19. A. D. King & C. C. McGeoch (2014): Algorithm engineering for a quantum annealing platform. arXiv:1410.2628 [cs.DS].
  20. J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton & C. C. McGeoch (2015): Benchmarking a quantum annealing processor with the time-to-target metric. arXiv:1508.05087 [quant-ph].
  21. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe & J. L. O'Brien (2010): Quantum computers. Nature 464, pp. 45, doi:10.1038/nature08812.
  22. M. Lanzagorta & J. K. Uhlmann (2005): Hybrid quantum-classical computing with applications to computer graphics. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH '05. ACM, New York, NY, doi:10.1145/1198555.1198723.
  23. D. Marx (2010): Fixed parameter algorithms. Part 2: Treewidth. Available at http://www.cs.bme.hu/~dmarx/papers/marx-warsaw-fpt2. Open lectures for PhD students in computer science, University of Warsaw, Poland.
  24. J. R. McClean, J. Romero, R. Babbush & A. Aspuru-Guzik (2016): The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, pp. 023023, doi:10.1088/1367-2630/18/2/023023.
  25. K. L. Pudenz (2016): Parameter Setting for Quantum Annealers. In: 20th IEEE High Performance Embedded Computing Workshop Proceedings, doi:10.1109/HPEC.2016.7761619.
  26. T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar & M. Troyer (2014): Defining and detecting quantum speedup. Science 345, pp. 420, doi:10.1126/science.1252319.
  27. S. W. Shin, G. Smith, J. A. Smolin & U. Vazirani (2014): How ``Quantum'' is the D-Wave Machine?. arXiv:1401.7087 [quant-ph].
  28. The Sage Developers (2017): SageMath, the Sage Mathematics Software System (Version 8.0). Available at http://www.sagemath.org.
  29. T. T. Tran, M. Do, E. G. Rieffel, J. Frank, Z. Wang, B. O'Gorman, D. Venturelli & J. C. Beck (2016): A Hybrid Quantum-Classical Approach to Solving Scheduling Problems. In: Proceedings of the Ninth International Symposium on Combinatorial Search. AAAI.
  30. D. Venturelli, D. J. J. Marchand & G. Rojo (2015): Job Shop Scheduling Solver based on Quantum Annealing. arXiv:1506.08479 [quant-ph].
  31. W. Vinci, T. Albash, G. Paz-Silva, I. Hen & D. A. Lidar (2015): Quantum annealing correction with minor embedding. Phys. Rev. A 92, pp. 042310, doi:10.1103/PhysRevA.92.042310.
  32. S. Yarkoni, A. Plaat & T. Bäck (2017): First results solving arbitrarily structured Maximum Independent Set problems using quantum annealing. Available at http://liacs.leidenuniv.nl/~plaata1/papers/MIS_yarkoni.pdf.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org