1. Samson Abramsky & Chris Heunen (2012): H^*-Algebras and Nonunital Frobenius Algebras: First Steps in Infinite-Dimensional Categorical Quantum Mechanics. In: Mathematical Foundations of Information Flow, Proc. of Symposia in Applied Math. 71. Amer. Math. Soc., pp. 1–24, doi:10.1090/psapm/071/599.
  2. J. Robin B. Cockett & Dwight Spencer (1992): Strong Categorical Datatypes I. In: Robert A.G. Seely: Category Theory 1991, CMS Conference Proceedings 13. Amer. Math. Soc., pp. 141–169.
  3. Jeff Egger, Rasmus Ejlers Møgelberg & Alex Simpson (2009): Enriching an Effect Calculus with Linear Types. In: Erich Grädel & Reinhard Kahle: Computer Science Logic, 23rd International Workshop, CSL 2009, Lecture Notes in Computer Science 5771. Springer, pp. 240–254, doi:10.1007/978-3-642-04027-6_19.
  4. Marcelo Fiore (2008): Second-Order and Dependently-Sorted Abstract Syntax. In: Proc. of 23rd Annual IEEE Symposium on Logic in Computer Science, LICS '08. IEEE, pp. 57–68, doi:10.1109/lics.2008.38.
  5. Marcelo Fiore, Gordon Plotkin & Daniele Turi (1999): Abstract Syntax and Variable Binding. In: Proc. of 14th Annual IEEE Symposium on Logic in Computer Science, LICS '99. IEEE, pp. 193–202, doi:10.1109/lics.1999.782615.
  6. Marcelo Fiore & Philip Saville (2017): List Objects with Algebraic Structure. In: Dale Miller: 2nd Int. Conference on Formal Structures for Computation and Deduction, FSCD 2017, Leibniz Int. Proc. in Informatics 84. Dagstuhl Publishing, pp. 16:1–16:18, doi:10.4230/lipics.fscd.2017.16.
  7. Robert Gordon & A. John Power (1997): Enrichment through Variation. J. Pure Appl. Algebra 120(2), pp. 167–185, doi:10.1016/s0022-4049(97)00070-4.
  8. George Janelidze & G. Max Kelly (2001): A Note on Actions of a Monoidal Category. Theor. Appl. Categ. 9(4), pp. 61–91. Available at
  9. Ohad Kammar, Paul B. Levy, Sean K. Moss & Sam Staton (2017): A Monad for Full Ground Reference Cells. In: Proc. of 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '17. IEEE, pp. 1–12, doi:10.1109/lics.2017.8005109.
  10. G. Max Kelly (1980): A Unified Treatment of Transfinite Constructions for Free Algebras, Free Monoids, Colimits, Associated Sheaves, and So on. Bull. Austral. Math. Soc. 22(1), pp. 1–83, doi:10.1017/s0004972700006353.
  11. G. Max Kelly (1982): Basic Concepts of Enriched Category Theory. London Math. Soc. Lecture Note Series 64. Cambridge University Press. Reprinted (2005) as: Reprints in Theory and Applications of Categories 10,
  12. Anders Kock (1970): Monads on Symmetric Monoidal Closed Categories. Arch. Math. 21(1), pp. 1–10, doi:10.1007/bf01220868.
  13. Anders Kock (1971): Bilinearity and Cartesian Closed Monads. Math. Scand. 29(2), pp. 161–174, doi:10.7146/math.scand.a-11042.
  14. Anders Kock (1971): Closed Categories Generated by Commutative Monads. Bull. Austral. Math. Soc. 12(4), pp. 405–424, doi:10.1017/s1446788700010272.
  15. Anders Kock (1972): Strong Functors and Monoidal Monads. Arch. Math. 23(1), pp. 113–120, doi:10.1007/bf01304852.
  16. Anders Kock (2012): Commutative Monads as a Theory of Distributions. Theor. Appl. Categ. 26(4), pp. 97–131. Available at
  17. Joachim Lambek (1974): Functional Completeness of Cartesian Categories. Ann. Math. Log. 6(3–4), pp. 259–292, doi:10.1016/0003-4843(74)90003-5.
  18. Paul B. Levy (2003): Call-by-Push-Value: A Functional/Imperative Synthesis. Semantic Structures in Computation 2. Kluwer Academic Publishers, doi:10.1007/978-94-007-0954-6.
  19. Paul B. Levy (2019): Locally Graded Categories. Slides from the talk at Univ. of Cambridge Category Theory Seminar, 12 Feb. 2019. Available at
  20. Paul B. Levy (2019): Strong Functors on Many-Sorted Sets. Comment. Math. Univ. Carolin. 60(4), pp. 533–540, doi:10.14712/1213-7243.2019.029.
  21. Fred E.J. Linton (1969): Coequalizers in Categories of Algebras. In: Beno Eckmann: Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematics 80. Springer, pp. 75–90, doi:10.1007/bfb0083082.
  22. Paul-André Melliès (2012): Parametric Monads and Enriched Adjunctions. Manuscript. Available at
  23. Eugenio Moggi (1989): Computational lambda-Calculus and Monads. In: Proc. of 4th Annual IEEE Symposium on Logic in Computer Science, LICS '89. IEEE, pp. 14–23, doi:10.1109/lics.1989.39155.
  24. Philip Mulry (2013): Notions of Monad Strength. In: Anindya Banerjee, Olivier Danvy, Kyung-Goo Doh & John Hatcliff: Semantics, Abstract Interpretation, and Reasoning about Programs: Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth Birthday, Electronic Proceedings in Theoretical Computer Science 129. Open Publishing Association, pp. 67–83, doi:10.4204/eptcs.129.6.
  25. Duško Pavlovi\'c (1997): Categorical Logic of Names and Abstraction in Action Calculi. Math. Struct. Comput. Sci. 7(6), pp. 619–637, doi:10.1017/s0960129597002296.
  26. Maciej Piróg (2016): Eilenberg–Moore Monoids and Backtracking Monad Transformers. In: Robert Atkey & Neelakantan Krishnaswami: Proc. of 6th Workshop on Mathematically Structured Functional Programming, MSFP '16, Electronic Proceedings in Theoretical Computer Science 207. Open Publishing Association, pp. 23–56, doi:10.4204/eptcs.207.2.
  27. John Power & Hayo Thielecke (1999): Closed Freyd- and κ-Categories. In: Jiří Wiedermann, Peter van Emde Boas & Mogens Nielsen: Automata, Languages and Programming, 26th International Colloquium, ICALP '99, Lecture Notes in Computer Science 1644. Springer, pp. 625–634, doi:10.1007/3-540-48523-6_59.
  28. Tetsuya Sato (2018): The Giry Monad Is Not Strong for the Canonical Symmetric Monoidal Closed Structure on Meas. J. Pure Appl. Algebra 222(10), pp. 2888–2896, doi:10.1016/j.jpaa.2017.11.004.
  29. Urs Schreiber & Paolo Perrone (2021): Strong monad (version 46). ncatlab page. Available at Version 1 from 22 July 2009 was written by U.S.; enrichment and copowering perspectives added by P.P. in version 26 from 27 Jan. 2020.
  30. Kornél Szlachányi (2017): On the Tensor Product of Modules over Skew Monoidal Actegories. J. Pure Appl. Algebra 221(1), pp. 185–221, doi:10.1016/j.jpaa.2016.06.003.
  31. Richard J. Wood (1976): Indicial Methods for Relative Categories. Dalhousie University. Available at

Comments and questions to:
For website issues: