1. Benedikt Ahrens, Dan Frumin, Marco Maggesi & Niels van der Weide (2019): Bicategories in Univalent Foundations. In: 4th International Conference on Formal Structures for Computation and Deduction, pp. 1–17, doi:10.4230/LIPIcs.FSCD.2019.5.
  2. Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride & Peter Morris (2015): Indexed containers. Journal of Functional Programming 25, doi:10.1017/S095679681500009X.
  3. Nathanael Arkor & Marcelo Fiore (2020): Algebraic models of simple type theories: A polynomial approach. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 88–101, doi:10.1145/3373718.3394771.
  4. Eric Finster, Maxime Lucas, Samuel Mimram & Thomas Seiller (2021).
  5. Marcelo Fiore (2004): Generalised species of structures: Cartesian closed and differential structure.
  6. Marcelo Fiore (2014): Analytic functors between presheaf categories over groupoids. Theoretical Computer Science 546, pp. 120–131, doi:10.1016/j.tcs.2014.03.004.
  7. Marcelo Fiore, Nicola Gambino, Martin Hyland & Glynn Winskel (2008): The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society 77(1), pp. 203–220, doi:10.1112/jlms/jdm096.
  8. Marcelo P Fiore (2007): Differential structure in models of multiplicative biadditive intuitionistic linear logic. In: International Conference on Typed Lambda Calculi and Applications. Springer, pp. 163–177, doi:10.1007/978-3-540-73228-0_13.
  9. Nicola Gambino & Joachim Kock (2013): Polynomial functors and polynomial monads. In: Mathematical Proceedings of the Cambridge Philosophical Society 1. Cambridge University Press, pp. 153–192, doi:10.1017/S0305004112000394.
  10. David Gepner, Rune Haugseng & Joachim Kock (2017): -Operads as Analytic Monads. arXiv preprint arXiv:1712.06469.
  11. Jean-Yves Girard (1988): Normal functors, power series and λ-calculus. Annals of pure and applied logic 37(2), pp. 129–177, doi:10.1016/0168-0072(88)90025-5.
  12. Ryu Hasegawa (2002): Two applications of analytic functors. Theoretical Computer Science 272(1-2), pp. 113–175, doi:10.1016/S0304-3975(00)00349-2.
  13. André Joyal (1986): Foncteurs analytiques et especes de structures. In: Combinatoire énumérative. Springer, pp. 126–159, doi:10.1007/BFb0072514.
  14. Donnacha Oisín Kidney (2019): A Small Proof that Fin is Injective.
  15. Joachim Kock (2009): Notes on polynomial functors. Manuscript, version.
  16. Joachim Kock (2012): Data types with symmetries and polynomial functors over groupoids. Electronic Notes in Theoretical Computer Science 286, pp. 351–365, doi:10.1016/j.entcs.2013.01.001.
  17. Joachim Kock, André Joyal, Michael Batanin & Jean-François Mascari (2010): Polynomial functors and opetopes. Advances in Mathematics 224(6), pp. 2690–2737, doi:10.1016/j.aim.2010.02.012.
  18. Daniel R Licata & Eric Finster (2014): Eilenberg-MacLane spaces in homotopy type theory. In: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–9, doi:10.1145/2603088.2603153.
  19. Paul-André Melliès (2009): Categorical semantics of linear logic. Panoramas et syntheses 27, pp. 15–215.
  20. Paul Taylor (1989): Quantitative domains, groupoids and linear logic. In: Category Theory and Computer Science. Springer, pp. 155–181, doi:10.1007/BFb0018351.
  21. The Univalent Foundations Program (2013): Homotopy Type Theory: Univalent Foundations of Mathematics., Institute for Advanced Study.
  22. Jakob Vidmar (2018): Polynomial functors and W-types for groupoids. University of Leeds.
  23. Mark Weber (2015): Polynomials in categories with pullbacks. Theory and applications of categories 30(16), pp. 533–598.

Comments and questions to:
For website issues: