1. Peter Aczel (1978): The type theoretic interpretation of constructive set theory. In: Logic Colloquium '77 (Proc. Conf., Wrocław, 1977), Stud. Logic Foundations Math. 96. North-Holland, Amsterdam, pp. 55–66, doi:10.1016/S0049-237X(08)71989-X.
  2. Peter Aczel (1982): The type theoretic interpretation of constructive set theory: choice principles. In: The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), Stud. Logic Found. Math. 110. North-Holland, Amsterdam, pp. 1–40, doi:10.1016/S0049-237X(09)70120-X.
  3. Peter Aczel (1986): The type theoretic interpretation of constructive set theory: inductive definitions. In: Logic, methodology and philosophy of science, VII (Salzburg, 1983), Stud. Logic Found. Math. 114. North-Holland, Amsterdam, pp. 17–49, doi:10.1016/S0049-237X(09)70683-4.
  4. Peter Aczel (2006): Aspects of general topology in constructive set theory. Ann. Pure Appl. Logic 137(1–3), pp. 3–29, doi:10.1016/j.apal.2005.05.016.
  5. Peter Aczel & Michael Rathjen (2000): Notes on Constructive Set Theory. Technical Report. Institut Mittag–Leffler. Report No. 40.
  6. Peter Aczel & Michael Rathjen (2010): Constructive set theory. Available at Book draft.
  7. Gianluigi Bellin (2014): Categorical Proof Theory of Co-Intuitionistic Linear Logic. Logical Methods in Computer Science 10(3), doi:10.2168/lmcs-10(3:16)2014.
  8. Benno van den Berg (2018): A Kuroda-style j-translation. Arch. Math. Log., doi:10.1007/s00153-018-0656-x.
  9. Jean-Yves Béziau (2006): Les axiomes de Tarski. In: Roger Pouivet & Manuel Resbuschi: La philosophie en Pologne 1919-1939. Librairie Philosophique J. VRIN, Paris.
  10. Marta Bílková & Almudena Colacito (2019): Proof Theory for Positive Logic with Weak Negation. ArXiv:1907.05411.
  11. Errett Bishop (1967): Foundations of Constructive Analysis. McGraw-Hill, New York.
  12. Errett Bishop & Douglas Bridges (1985): Constructive Analysis. Springer, doi:10.1007/978-3-642-61667-9.
  13. Jan Cederquist & Thierry Coquand (2000): Entailment relations and distributive lattices. In: Samuel R. Buss, Petr Hájek & Pavel Pudlák: Logic Colloquium '98. Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Prague, Czech Republic, August 9–15, 1998, Lect. Notes Logic 13. A. K. Peters, Natick, MA, pp. 127–139, doi:10.1017/9781316756140.011.
  14. Petr Cintula & Noguera Carles (2013): The Proof by Cases Property and its Variants in Structural Consequence Relations. Studia Logica 101(4), pp. 713–747, doi:10.1007/s11225-013-9496-1.
  15. Francesco Ciraulo, Maria Emilia Maietti & Giovanni Sambin (2013): Convergence in formal topology: a unifying notion. J. Log. Anal. 5(2), pp. 1–45, doi:10.4115/jla.2013.5.2.
  16. Francesco Ciraulo & Giovanni Sambin (2008): Finitary formal topologies and Stone's representation theorem. Theoret. Comput. Sci. 405(1–2), pp. 11–23, doi:10.1016/j.tcs.2008.06.020.
  17. Thierry Coquand (2000): A direct proof of the localic Hahn-Banach theorem. Available at
  18. Thierry Coquand (2000): Lewis Carroll, Gentzen and entailment relations. Available at
  19. Thierry Coquand (2005): About Stone's notion of spectrum. J. Pure Appl. Algebra 197(1–3), pp. 141–158, doi:10.1016/j.jpaa.2004.08.024.
  20. Thierry Coquand (2009): Space of valuations. Ann. Pure Appl. Logic 157, pp. 97–109, doi:10.1016/j.apal.2008.09.003.
  21. Thierry Coquand & Henri Lombardi (2002): Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings. In: M. Fontana, S.-E. Kabbaj & S. Wiegand: Commutative Ring Theory and Applications, Lect. Notes Pure Appl. Mathematics 231. Addison-Wesley, Reading, MA, pp. 477–499.
  22. Thierry Coquand, Henri Lombardi & Stefan Neuwirth (2019): Lattice-ordered groups generated by an ordered group and regular systems of ideals. Rocky Mountain J. Math. 49(5), pp. 1449–1489, doi:10.1216/RMJ-2019-49-5-1449.
  23. Thierry Coquand & Stefan Neuwirth (2017): An introduction to Lorenzen's ``Algebraic and logistic investigations on free lattices'' (1951). Available at Preprint.
  24. Thierry Coquand & Henrik Persson (2001): Valuations and Dedekind's Prague theorem. J. Pure Appl. Algebra 155(2–3), pp. 121–129, doi:10.1016/S0022-4049(99)00095-X.
  25. Thierry Coquand & Guo-Qiang Zhang (2000): Sequents, frames, and completeness. In: Peter G. Clote & Helmut Schwichtenberg: Computer Science Logic (Fischbachau, 2000), Lecture Notes in Comput. Sci. 1862. Springer, Berlin, pp. 277–291, doi:10.1007/3-540-44622-2_18.
  26. Dirk van Dalen (2013): Logic and Structure, fifth edition, Universitext. Springer, London, doi:10.1007/978-1-4471-4558-5.
  27. Martín Escardó & Paulo Oliva (2012): The Peirce translation. Ann. Pure Appl. Logic 163, pp. 681–692, doi:10.1016/j.apal.2011.11.002.
  28. Christian Espíndola (2013): A short proof of Glivenko theorems for intermediate predicate logics. Arch. Math. Logic 52(7-8), pp. 823–826, doi:10.1007/s00153-013-0346-7.
  29. Matt Fairtlough & Michael Mendler (1997): Propositional lax logic. Inf. and Comput. 137(1), pp. 1–33, doi:10.1006/inco.1997.2627.
  30. Giulio Fellin (2018): The Jacobson Radical: from Algebra to Logic. Master's thesis. Università di Verona, Dipartimento di Informatica.
  31. Giulio Fellin, Peter Schuster & Daniel Wessel (2019): The Jacobson Radical of a Propositional Theory. In: Thomas Piecha & Peter Schroeder-Heister: Proof-Theoretic Semantics: Assessment and Future Perspectives. Proceedings of the Third Tübingen Conference on Proof-Theoretic Semantics, 27–30 March 2019. University of Tübingen, pp. 287–299, doi:10.15496/publikation-35319.
  32. Giulio Fellin, Peter Schuster & Daniel Wessel (2019): The Jacobson radical of a propositional theory. Submitted.
  33. Harvey Friedman (1978): Classical and intuitionistically provably recursive functions. In: G.H. Müller & D.S. Scott: Higher Set Theory, LNM 669. Springer, New York, pp. 21–27, doi:10.1007/BFb0103100.
  34. Nikolaos Galatos & Hiroakira Ono (2006): Glivenko Theorems for Substructural Logics over FL. The Journal of Symbolic Logic 71(4), pp. 1353–1384, doi:10.2178/jsl/1164060460.
  35. Valery Glivenko (1929): Sur quelques points de la Logique de M. Brouwer. Acad. Roy. Belg. Bull. Cl. Sci. (5) 15, pp. 183–188.
  36. Giulio Guerrieri & Alberto Naibo (2019): Postponement of raa and Glivenko's theorem, revisited. Studia Logica 107(1), pp. 109–144, doi:10.2178/jsl/1231082306.
  37. Levon Haykazyan (2020): More on a curious nucleus. J. Pure Appl. Algebra 224, pp. 860–868, doi:10.1016/j.jpaa.2019.06.014.
  38. Paul Hertz (1922): Über Axiomensysteme für beliebige Satzsysteme. I. Teil. Sätze ersten Grades. Math. Ann. 87(3), pp. 246–269, doi:10.1007/BF01459067.
  39. Paul Hertz (1923): Über Axiomensysteme für beliebige Satzsysteme. II. Teil. Sätze höheren Grades. Math. Ann. 89(1), pp. 76–102, doi:10.1007/BF01448090.
  40. Paul Hertz (1929): Über Axiomensysteme für beliebige Satzsysteme. Math. Ann. 101(1), pp. 457–514, doi:10.1007/BF01454856.
  41. Hajime Ishihara & Takako Nemoto (2016): A note on the independence of premiss rule. Math. Log. Q. 62(1-2), pp. 72–76, doi:10.1002/malq.201500032.
  42. Hajime Ishihara & Helmut Schwichtenberg (2016): Embedding classical in minimal implicational logic. MLQ Math. Log. Q. 62(1-2), pp. 94–101, doi:10.1002/malq.201400099.
  43. Peter T. Johnstone (1982): Stone Spaces.. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press.
  44. Marcus Kracht (1998): On Extensions of Intermediate Logics by Strong Negation. Journal of Philosophical Logic 27(1), doi:10.1023/A:1004222213212.
  45. Javier Legris: Paul Hertz and the origins of structural reasoning. In: Jean-Yves Béziau: Universal Logic: An Anthology. From Paul Hertz to Dov Gabbay, Studies in Universal Logic. Birkhäuser, Basel, pp. 3–10, doi:10.1007/978-3-0346-0145-0_1.
  46. Tadeusz Litak, Miriam Polzer & Ulrich Rabenstein (2017): Negative translations and normal modality. In: 2nd International Conference on Formal Structures for Computation and Deduction, LIPIcs. Leibniz Int. Proc. Inform. 84. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, pp. Art. No. 27, 18.
  47. Henri Lombardi & Claude Quitté (2015): Commutative Algebra: Constructive Methods. Finite Projective Modules. Algebra and Applications 20. Springer Netherlands, Dordrecht, doi:10.1007/978-94-017-9944-7.
  48. Ray Mines, Fred Richman & Wim Ruitenburg (1988): A Course in Constructive Algebra. Springer, New York, doi:10.1007/978-1-4419-8640-5. Universitext.
  49. Sara Negri (1996): Stone bases alias the constructive content of Stone representation. In: Aldo Ursini & Paolo Aglianò: Logic and algebra. Proceedings of the international conference dedicated to the memory of Roberto Magari, April 26–30, 1994, Pontignano, Italy, Lecture Notes in Pure and Applied Mathematics 180. Marcel Dekker, New York, pp. 617–636, doi:10.1201/9780203748671-28.
  50. Sara Negri (2002): Continuous domains as formal spaces. Math. Structures Comput. Sci. 12(1), pp. 19–52, doi:10.1017/S0960129501003450.
  51. Sara Negri (2003): Contraction-free sequent calculi for geometric theories with an application to Barr's theorem. Arch. Math. Logic 42(4), pp. 389–401, doi:10.1007/s001530100124.
  52. Sara Negri (2016): Glivenko sequent classes in the light of structural proof theory. Arch. Math. Logic 55(3-4), pp. 461–473, doi:10.1007/s00153-016-0474-y.
  53. Sara Negri, Jan von Plato & Thierry Coquand (2004): Proof-theoretical analysis of order relations. Arch. Math. Logic 43, pp. 297–309, doi:10.1007/s00153-003-0209-8.
  54. Sara Negri & Jan von Plato (2001): Structural Proof Theory. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511527340.
  55. Sara Negri & Jan von Plato (2011): Proof Analysis. A Contribution to Hilbert's Last Problem. Cambridge University Press, Cambridge, doi:10.1017/CBO9781139003513.
  56. Hiroakira Ono (2009): Glivenko theorems revisited. Ann. Pure Appl. Logic 161(2), pp. 246–250, doi:10.1016/j.apal.2009.05.006.
  57. Luiz Carlos Pereira & Edward Hermann Haeusler (2015): On constructive fragments of classical logic. In: Dag Prawitz on proofs and meaning, Outst. Contrib. Log. 7. Springer, Cham, pp. 281–292, doi:10.1007/978-3-319-11041-7_12.
  58. Helena Rasiowa (1974): An Algebraic Approach to Non-Classical Logics.. North-Holland Publishing Company, Amsterdam.
  59. Greg Restall (2000): An Introduction to Substructural Logics. Routledge, London, doi:10.4324/9780203252642.
  60. Davide Rinaldi (2014): Formal Methods in the Theories of Rings and Domains. Doctoral dissertation. Universität München.
  61. Davide Rinaldi, Peter Schuster & Daniel Wessel (2017): Eliminating disjunctions by disjunction elimination. Bull. Symb. Logic 23(2), pp. 181–200, doi:10.1017/bsl.2017.13.
  62. Davide Rinaldi, Peter Schuster & Daniel Wessel (2018): Eliminating disjunctions by disjunction elimination. Indag. Math. (N.S.) 29(1), pp. 226–259, doi:10.1016/j.indag.2017.09.011.
  63. Davide Rinaldi & Daniel Wessel (2018): Extension by conservation. Sikorski's theorem. Log. Methods Comput. Sci. 14(4:8), pp. 1–17.
  64. Davide Rinaldi & Daniel Wessel (2019): Cut elimination for entailment relations. Arch. Math. Logic 58(5–6), pp. 605–625, doi:10.1007/s00153-018-0653-0.
  65. Kimmo I. Rosenthal (1990): Quantales and their Applications. Pitman Research Notes in Mathematics 234. Longman Scientific & Technical, Essex.
  66. Giovanni Sambin (1987): Intuitionistic formal spaces—a first communication. In: D. Skordev: Mathematical Logic and its Applications, Proc. Adv. Internat. Summer School Conf., Druzhba, Bulgaria, 1986. Plenum, New York, pp. 187–204, doi:10.1007/978-1-4613-0897-3_12.
  67. Giovanni Sambin (2003): Some points in formal topology. Theoret. Comput. Sci. 305(1–3), pp. 347–408, doi:10.1016/S0304-3975(02)00704-1.
  68. Giovanni Sambin (forthcoming): The Basic Picture. Structures for Constructive Topology. Oxford Logic Guides. Clarendon Press, Oxford.
  69. Konstantin Schlagbauer, Peter Schuster & Daniel Wessel (2019): Der Satz von Hahn–Banach per Disjunktionselimination. Confluentes Math. 11(1), pp. 79–93, doi:10.5802/cml.57.
  70. Peter Schuster & Daniel Wessel (2020): Resolving Finite Indeterminacy: A Definitive Constructive Universal Prime Ideal Theorem. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 20. Association for Computing Machinery, New York, NY, USA, pp. 820830, doi:10.1145/3373718.3394777.
  71. Dana Scott (1971): On engendering an illusion of understanding. J. Philos. 68, pp. 787–807, doi:10.2307/2024952.
  72. Dana Scott (1974): Completeness and axiomatizability in many-valued logic. In: Leon Henkin, John Addison, C.C. Chang, William Craig, Dana Scott & Robert Vaught: Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971). Amer. Math. Soc., Providence, RI, pp. 411–435, doi:10.1090/pspum/025/0363802.
  73. Dana S. Scott (1973): Background to formalization. In: Hugues Leblanc: Truth, syntax and modality (Proc. Conf. Alternative Semantics, Temple Univ., Philadelphia, Pa., 1970). North-Holland, Amsterdam, pp. 244–273. Studies in Logic and the Foundations of Math., Vol. 68, doi:10.1016/S0049-237X(08)71542-8.
  74. Harold Simmons (1978): A framework for topology. In: Angus Macintyre, Leszek Pacholski & Jeff Paris: Logic Colloquium '77, Studies in Logic and the Foundations of Mathematics 96. North-Holland Publishing Company, Amsterdam, pp. 239–251, doi:10.1016/S0049-237X(08)72007-X.
  75. Harold Simmons (2010): A curious nucleus. J. Pure Appl. Algebra 214, pp. 2063–2073, doi:10.1016/j.jpaa.2010.02.011.
  76. Alfred Tarski (1930): Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I. Monatsh. Math. Phys. 37, pp. 361–404, doi:10.1007/BF01696782.
  77. San-min Wang & Petr Cintula (2008): Logics with disjunction and proof by cases. Arch. Math. Logic 47(5), pp. 435–446, doi:10.1007/s00153-008-0088-0.
  78. Heinrich Wansing (2008): Constructive negation, implication, and co-implication. Journal of Applied Non-Classical Logics 18(2-3), pp. 341–364, doi:10.3166/jancl.18.341-364.
  79. Daniel Wessel (2019): Ordering groups constructively. Comm. Algebra 47(12), pp. 4853–4873, doi:10.1080/00927872.2018.1477947.
  80. Daniel Wessel (2019): Point-free spectra of linear spreads. In: S. Centrone, S. Negri, D. Sarikaya & P. Schuster: Mathesis Universalis, Computability and Proof, Synthese Library. Springer, pp. 353–374, doi:10.1007/978-3-030-20447-1_19.

Comments and questions to:
For website issues: