1. R. J. Aumann (1961): Borel structures for function spaces. Illinois Journal of Mathematics 5, pp. 614–630, doi:10.1215/ijm/1255631584.
  2. Jon Beck (1969): Distributive laws. In: B. Eckmann: Seminar on Triples and Categorical Homology Theory. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 119–140, doi:10.1007/BFb0083084.
  3. Vince Bárány, Balder ten Cate, Benny Kimelfeld, Dan Olteanu & Zografoula Vagena (2017): Declarative Probabilistic Programming with Datalog. ACM Transactions on Database Systems (TODS) 42(4), doi:10.1017/S1471068409003767.
  4. Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen & Limsoon Wong (1994): Comprehension Syntax. SIGMOD Rec. 23(1), pp. 87–96, doi:10.1145/153850.153853.
  5. I I Ceylan, A Darwiche & Guy Van den Broeck (2016): Open-World Probabilistic Databases. In: Proc. KR 2016, doi:10.1016/j.artint.2021.103474.
  6. S. Dash & S. Staton (2020): A monad for probabilistic point processes. In: Proc. ACT 2020, doi:10.4204/EPTCS.333.2.
  7. L De Raedt & A Kimmig (2015): Probabilistic (logic) programming concepts. Machine Learning 100(1), pp. 5–47, doi:10.1007/s10994-015-5494-z.
  8. Michèle Giry (1982): A categorical approach to probability theory. In: Categorical aspects of topology and analysis (Ottawa, Ont., 1980), Lecture Notes in Mathematics 915. Springer, Berlin, pp. 68–85, doi:10.1007/BFb0092872.
  9. Alexandre Goy & Daniela Petrisan (2020): Combining probabilistic and non-deterministic choice via weak distributive laws. In: Proc. LICS 2020, doi:10.1145/3373718.3394795.
  10. Martin Grohe, Benjamin Lucien Kaminski, Joost-Pieter Katoen & Peter Lindner: Generative Datalog with Continuous Distributions. In: Proc. PODS 2020, pp. 347–360, doi:10.1145/3375395.3387659.
  11. Martin Grohe & Peter Lindner (2019): Probabilistic Databases with an Infinite Open-World Assumption. In: Proc. PODS 2019, pp. 17–31, doi:10.1145/3294052.3319681.
  12. Martin Grohe & Peter Lindner (2020): Infinite Probabilistic Databases. In: Proc. ICDT 2020, doi:10.4230/LIPIcs.ICDT.2020.16.
  13. Stephane Grumbach, Leonid Libkin, Tova Milo & Limsoon Wong (1996): Query languages for bags: expressive power and complexity. SIGACT News (Database Theory Column), pp. 30–37, doi:10.1145/153850.153853.
  14. Gerco van Heerdt, Justin Hsu, Joel Ouaknine & Alexandra Silva (2018): Convex Language Semantics for Nondeterministic Probabilistic Automata. In: Proc. ICTAC 2018, doi:10.1007/3-540-45319-9_1.
  15. C. Heunen, O. Kammar, S. Staton & H. Yang (2017): A convenient category for higher-order probability theory. In: Proc. LICS 2017. IEEE Press, doi:10.1109/LICS.2017.8005137.
  16. Bart Jacobs (2021): From Multisets over Distributions to Distributions over Multisets. In: Proc. LICS 2021, doi:10.1109/LICS52264.2021.9470678.
  17. Bart Jacobs (2021): Multinomial and Hypergeometric distributions in Markov Categories. In: Proc. MFPS 2021.
  18. Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine & Peter J. Haas (2008): MCDB: A Monte Carlo Approach to Managing Uncertain Data. In: Sigmod 2008, doi:10.1145/1376616.1376686.
  19. Klaus Keimel & Gordon Plotkin: Mixed powerdomains for probability and nondeterminism. arXiv:1612.01005, doi:10.23638/LMCS-13(1:2)2017.
  20. A K Lew, M Agrawal, D Sontag & V K Mansinghka (2021): PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. In: Proc. AISTATS 2021.
  21. Odile Macchi (1975): The Coincidence Approach to Stochastic Point Processes. Advances in Applied Probability 7, pp. 83–122, doi:10.2307/1425855.
  22. Matteo Mio & Valeria Vignudelli (2020): Monads and quantitative equational theories for nondeterminism and probabilities. In: Proc. CONCUR 2020, doi:10.4230/LIPIcs.CONCUR.2020.28.
  23. Michael W. Mislove, Joël Ouaknine & James Worrell (2003): Axioms for Probability and Nondeterminism. In: Proc. EXPRESS 2003, doi:10.1016/j.entcs.2004.04.019.
  24. Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 5592, doi:10.1016/0890-5401(91)90052-4.
  25. Jose Enrique Moyal (1962): The General Theory of Stochastic Population Processes. Acta Mathematica 108, doi:10.1007/BF02545761.
  26. Simon Peyton Jones & Philip Wadler (2007): Comprehensive comprehensions. In: Gabriele Keller: Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007, Freiburg, Germany, September 30, 2007. ACM, pp. 61–72, doi:10.1145/1291201.1291209.
  27. F. Saad & V. Mansinghka (2016): A Probabilistic Programming Approach To Probabilistic Data Analysis. In: NeurIPS.
  28. Dan Suciu, Dan Olteanu, Christopher Ré & Christoph Koch (2011): Probabilistic Databases. Morgan and Claypool, doi:10.1016/S0304-3975(96)00129-6.
  29. D Varacca & G Winskel (2006): Distributing probability over non-determinism. Mathematical structures in computer science 16, pp. 87–113, doi:10.1017/S0960129505005074.
  30. P Wadler (1992): Comprehending monads. Mathematical Structures in Computer Science 2, pp. 461–493, doi:10.1016/0304-3975(75)90017-1.
  31. Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du & Stuart J. Russell (2018): Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms. In: Proc. ICML 2018, pp. 5339–5348.
  32. Maaike Zwart & Dan Marsden (2019): No-Go Theorems for Distributive Laws. In: Proc. LICS 2019, doi:10.1109/LICS.2019.8785707.

Comments and questions to:
For website issues: