1. JiříAdámek (2005): Introduction to coalgebra.. Theory and Applications of Categories [electronic only] 14, pp. 157–199.
  2. Jos C. M. Baeten, Flavio Corradini & Clemens Grabmayer (2006): On the Star Height of Regular Expressions Under Bisimulation (Extended Abstract). EXPRESS '06.
  3. Jos C. M. Baeten, Flavio Corradini & Clemens Grabmayer (2007): A characterization of regular expressions under bisimulation. J. ACM 54(2), pp. 6, doi:10.1145/1219092.1219094.
  4. Jørgen Bang-Jensen & Gregory Z. Gutin (2009): Digraphs - Theory, Algorithms and Applications, Second Edition. Springer Monographs in Mathematics. Springer, doi:10.1007/978-1-84800-998-1.
  5. J. Bergstra, I. Bethke & A. Ponse (1994): Process Algebra with Iteration and Nesting. The Computer Journal 37(4), pp. 243–258, doi:10.1093/comjnl/37.4.243. ArXiv:
  6. Marcello M. Bonsangue, Stefan Milius & Alexandra Silva (2013): Sound and Complete Axiomatizations of Coalgebraic Language Equivalence. ACM Trans. Comput. Logic 14(1), doi:10.1145/2422085.2422092.
  7. Janusz A. Brzozowski (1964): Derivatives of Regular Expressions. J. ACM 11(4), pp. 481–494, doi:10.1145/321239.321249.
  8. Hubie Chen & Riccardo Pucella (2003): A Coalgebraic Approach to Kleene Algebra with Tests. In: H. Peter Gumm: 6th International Workshop on Coalgebraic Methods in Computer Science, CMCS 2003, Satellite Event for ETAPS 2003, Warsaw, Poland, April 5-6, 2003, Electronic Notes in Theoretical Computer Science 82. Elsevier, pp. 94–109, doi:10.1016/S1571-0661(04)80634-0.
  9. John Horton Conway (2012): Regular algebra and finite machines. Courier Corporation.
  10. Wan Fokkink (1997): Axiomatizations for the perpetual loop in process algebra. In: Pierpaolo Degano, Roberto Gorrieri & Alberto Marchetti-Spaccamela: Automata, Languages and Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 571–581, doi:10.1145/321312.321326.
  11. Wan J. Fokkink & Hans Zantema (1994): Basic Process Algebra with Iteration: Completeness of its Equational Axioms. Comput. J. 37(4), pp. 259–268, doi:10.1093/comjnl/37.4.259.
  12. Wan J. Fokkink & Hans Zantema (1997): Termination Modulo Equations by Abstract Commutation with an Application to Iteration. Theor. Comput. Sci. 177(2), pp. 407–423, doi:10.1016/S0304-3975(96)00254-X.
  13. Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva & Laure Thompson (2015): A Coalgebraic Decision Procedure for NetKAT. In: Sriram K. Rajamani & David Walker: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. ACM, pp. 343–355, doi:10.1145/2676726.2677011.
  14. Clemens Grabmayer & Wan Fokkink (2020): A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity. Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, doi:10.1145/3373718.3394744.
  15. Clemens Grabmayer & Wan Fokkink (2020): A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity. ArXiv:2004.12740.
  16. H. Gumm (1998): Functors for Coalgebras. Algebra Universalis 45, doi:10.1007/s00012-001-8156-x.
  17. H. Gumm (1999): Elements Of The General Theory Of Coalgebras.
  18. H. Peter Gumm & Tobias Schröder (2001): Covarieties and complete covarieties. Theor. Comput. Sci. 260(1-2), pp. 71–86, doi:10.1016/S0304-3975(00)00123-7.
  19. Bart Jacobs (2006): A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages. In: Kokichi Futatsugi, Jean-Pierre Jouannaud & José Meseguer: Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday, Lecture Notes in Computer Science 4060. Springer, pp. 375–404, doi:10.1007/11780274_20.
  20. Bart Jacobs (2016): Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge Tracts in Theoretical Computer Science 59. Cambridge University Press, doi:10.1017/CBO9781316823187.
  21. Peter Jipsen (2014): Concurrent Kleene Algebra with Tests. In: Peter Höfner, Peter Jipsen, Wolfram Kahl & Martin Eric Müller: Relational and Algebraic Methods in Computer Science - 14th International Conference, RAMiCS 2014, Marienstatt, Germany, April 28-May 1, 2014. Proceedings, Lecture Notes in Computer Science 8428. Springer, pp. 37–48, doi:10.1007/978-3-319-06251-8_3.
  22. Peter T. Johnstone, John Power, Toru Tsujishita, Hiroshi Watanabe & James Worrell (2001): On the structure of categories of coalgebras. Theor. Comput. Sci. 260(1-2), pp. 87–117, doi:10.1016/S0304-3975(00)00124-9.
  23. Tobias Kappé, Paul Brunet, Alexandra Silva & Fabio Zanasi (2018): Concurrent Kleene Algebra: Free Model and Completeness. In: Amal Ahmed: Programming Languages and Systems. Springer International Publishing, Cham, pp. 856–882, doi:10.1007/978-3-319-89884-1_30.
  24. S. Kleene (1951): Representation of Events in Nerve Nets and Finite Automata.
  25. Dexter Kozen (1991): A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. In: Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS '91), Amsterdam, The Netherlands, July 15-18, 1991. IEEE Computer Society, pp. 214–225, doi:10.1109/LICS.1991.151646.
  26. Dexter Kozen & Frederick Smith (1996): Kleene Algebra with Tests: Completeness and Decidability. In: Dirk van Dalen & Marc Bezem: Computer Science Logic, 10th International Workshop, CSL '96, Annual Conference of the EACSL, Utrecht, The Netherlands, September 21-27, 1996, Selected Papers, Lecture Notes in Computer Science 1258. Springer, pp. 244–259, doi:10.1007/3-540-63172-0_43.
  27. Stefan Milius (2010): A Sound and Complete Calculus for Finite Stream Circuits. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom. IEEE Computer Society, pp. 421–430, doi:10.1109/LICS.2010.11.
  28. Robin Milner (1984): A Complete Inference System for a Class of Regular Behaviours. J. Comput. Syst. Sci. 28(3), pp. 439–466, doi:10.1016/0022-0000(84)90023-0.
  29. Jan J. M. M. Rutten (1998): Automata and Coinduction (An Exercise in Coalgebra). In: Davide Sangiorgi & Robert de Simone: CONCUR '98: Concurrency Theory, 9th International Conference, Nice, France, September 8-11, 1998, Proceedings, Lecture Notes in Computer Science 1466. Springer, pp. 194–218, doi:10.1007/BFb0055624.
  30. Jan J. M. M. Rutten (2000): Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), pp. 3–80, doi:10.1016/S0304-3975(00)00056-6.
  31. Arto Salomaa (1966): Two Complete Axiom Systems for the Algebra of Regular Events. J. ACM 13(1), pp. 158–169, doi:10.1145/321312.321326.
  32. Todd Schmid, Tobias Kappé, Dexter Kozen & Alexandra Silva (2021): Guarded Kleene Algebra with Tests: Coequations, Coinduction, and Completeness. In: Nikhil Bansal, Emanuela Merelli & James Worrell: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), Leibniz International Proceedings in Informatics (LIPIcs) 198. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 142:1–142:14, doi:10.4230/LIPIcs.ICALP.2021.142.
  33. Todd Schmid, Jurriaan Rot & Alexandra Silva (2021): On Star Expressions and Coalgebraic Completeness Theorems. ArXiv:2106.08074.
  34. Alexandra Silva (2010): Kleene coalgebra. University of Nijmegen.
  35. Alexandra Silva, Marcello Bonsangue & Jan Rutten (2010): Non-Deterministic Kleene Coalgebras. Logical Methods in Computer Science 6(3), doi:10.2168/lmcs-6(3:23)2010.
  36. Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen & Alexandra Silva (2019): Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time. Proc. ACM Program. Lang. 4(POPL), doi:10.1145/3371129.
  37. Daniele Turi & Gordon D. Plotkin (1997): Towards a Mathematical Operational Semantics. In: Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 - July 2, 1997. IEEE Computer Society, pp. 280–291, doi:10.1109/LICS.1997.614955.

Comments and questions to:
For website issues: