1. S. Abramsky (1991): Domain Theory in Logical Form. Ann. Pure Appl. Log. 51(1-2), pp. 1–77, doi:10.1016/0168-0072(91)90065-T.
  2. S. Abramsky & C.-H.L. Ong (1993): Full abstraction in the lazy lambda calculus. Inf. Comput. 105(2), pp. 159–267, doi:10.1006/inco.1993.1044.
  3. F. Alessi, M. Dezani-Ciancaglini & F. Honsell (2004): Inverse Limit Models as Filter Models. In: Delia Kesner, Femke van Raamsdonk & Joe Wells: HOR'04. RWTH Aachen, Aachen, pp. 3–25.
  4. F. Alessi, F. Barbanera & M. Dezani-Ciancaglini (2006): Intersection types and lambda models. Theor. Comput. Sci. 355(2), pp. 108–126, doi:10.1016/j.tcs.2006.01.004.
  5. F. Alessi & P. Severi (2008): Recursive Domain Equations of Filter Models. In: Viliam Geffert, Juhani Karhumäki, Alberto Bertoni, Bart Preneel, Pavol Návrat & Mária Bieliková: SOFSEM 2008: Theory and Practice of Computer Science, 34th Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 19-25, 2008, Proceedings, Lecture Notes in Computer Science 4910. Springer, pp. 124–135, doi:10.1007/978-3-540-77566-9_11.
  6. H. P. Barendregt, M. Coppo & M. Dezani-Ciancaglini (1983): A Filter Lambda Model and the Completeness of Type Assignment. J. Symb. Log. 48(4), pp. 931–940, doi:10.2307/2273659.
  7. H. P. Barendregt, W. Dekkers & R. Statman (2013): Lambda Calculus with Types. Perspectives in logic. Cambridge University Press, doi:10.1017/CBO9781139032636.
  8. N. Benton, J. Hughes & E. Moggi (2002): Monads and Effects. In: Applied Semantics, International Summer School, APPSEM 2000, Lecture Notes in Computer Science 2395. Springer, pp. 42–122, doi:10.1007/3-540-45699-6_2.
  9. N. Benton, A. Kennedy, L. Beringer & M. Hofmann (2009): Relational semantics for effect-based program transformations: higher-order store. In: António Porto & Francisco Javier López-Fraguas: Proceedings of the 11th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, September 7-9, 2009, Coimbra, Portugal. ACM, pp. 301–312, doi:10.1145/1599410.1599447.
  10. A. Bucciarelli, T. Ehrhard & G. Manzonetto (2007): Not Enough Points Is Enough. In: Jacques Duparc & Thomas A. Henzinger: Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lecture Notes in Computer Science 4646. Springer, pp. 298–312, doi:10.1007/978-3-540-74915-8_24.
  11. D. de Carvalho (2018): Execution time of λ-terms via denotational semantics and intersection types. Math. Struct. Comput. Sci. 28(7), pp. 1169–1203, doi:10.1017/S0960129516000396.
  12. M. Coppo, M. Dezani-Ciancaglini, F. Honsell & G. Longo (1984): Extended type structures and filter lambda models. In: G. Lolli, G. Longo & A. Marcja: Logic Colloquium 82. North-Holland, Amsterdam, the Netherlands, pp. 241–262, doi:10.1016/S0049-237X(08)71819-6.
  13. U. Dal Lago, F. Gavazzo & P. B. Levy (2017): Effectful Applicative Bisimilarity: Monads, Relators, and Howe's Method. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017. IEEE Computer Society, pp. 1–12, doi:10.1109/LICS.2017.8005117.
  14. U. de'Liguoro & R. Treglia (2020): The untyped computational λ-calculus and its intersection type discipline. Theor. Comput. Sci. 846, pp. 141–159, doi:10.1016/j.tcs.2020.09.029.
  15. U. de'Liguoro & R. Treglia (2021): Intersection Types for a Computational Lambda-Calculus with Global State, ArXiv:2104.01358.
  16. M. Dezani-Ciancaglini, F. Honsell & F. Alessi (2003): A complete characterization of complete intersection-type preorders. ACM Trans. Comput. Log. 4(1), pp. 120–147, doi:10.1145/601775.601780.
  17. F. Gavazzo (2019): Coinductive Equivalences and Metrics for Higher-order Languages with Algebraic Effects. University of Bologna, Italy. Available at
  18. M. Hyland & J. Power (2006): Discrete Lawvere theories and computational effects. Theor. Comput. Sci. 366(1-2), pp. 144–162, doi:10.1016/j.tcs.2006.07.007.
  19. M. Hyland & J. Power (2007): The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads. Electron. Notes Theor. Comput. Sci. 172, pp. 437–458, doi:10.1016/j.entcs.2007.02.019.
  20. U. Dal Lago & F. Gavazzo (2019): Effectful Normal Form Bisimulation. In: Luís Caires: Programming Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Lecture Notes in Computer Science 11423. Springer, pp. 263–292, doi:10.1007/978-3-030-17184-1_10.
  21. P.-A. Melliès & N. Zeilberger (2015): Functors are Type Refinement Systems. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015. ACM, pp. 3–16, doi:10.1145/2676726.2676970.
  22. E. Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55–92, doi:10.1016/0890-5401(91)90052-4.
  23. G. D. Plotkin & J. Power (2002): Notions of Computation Determine Monads. In: FOSSACS 2002, Lecture Notes in Computer Science 2303. Springer, pp. 342–356, doi:10.1007/3-540-45931-6_24.
  24. G. D. Plotkin & J. Power (2003): Algebraic Operations and Generic Effects. Appl. Categorical Struct. 11(1), pp. 69–94, doi:10.1023/A:1023064908962.
  25. J. Power (2006): Generic models for computational effects. Theor. Comput. Sci. 364(2), pp. 254–269, doi:10.1016/j.tcs.2006.08.006.
  26. P. Wadler (1992): The Essence of Functional Programming. In: Conference Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1992. ACM Press, pp. 1–14, doi:10.1145/143165.143169.
  27. P. Wadler (1995): Monads for Functional Programming. In: Advanced Functional Programming, First International Spring School on Advanced Functional Programming Techniques, Lecture Notes in Computer Science 925. Springer, pp. 24–52, doi:10.1007/3-540-59451-5_2.

Comments and questions to:
For website issues: