1. Samson Abramsky & Dominic Horsman (2015): DEMONIC programming: a computational language for single-particle equilibrium thermodynamics, and its formal semantics. In: Chris Heunen, Peter Selinger & Jamie Vicary: Proceedings 12th International Workshop on Quantum Physics and Logic, pp. 1–16, doi:10.4204/EPTCS.195.1.
  2. Thorsten Altenkirch & Jonathan Grattage (2005): A Functional Quantum Programming Language. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings, pp. 249–258, doi:10.1109/LICS.2005.1.
  3. Bogdan Aman, Gabriel Ciobanu, Robert Glück, Robin Kaarsgaard, Jarkko Kari, Martin Kutrib, Ivan Lanese, Claudio Antares Mezzina, Łukasz Mikulski & Rajagopal Nagarajan (2020): Foundations of reversible computation. In: Irek Ulidowski, Ivan Lanese, Ulrik Pagh Schultz & Carla Ferreira: Reversible Computation: Extending Horizons of Computing. Springer, pp. 1–40, doi:10.1016/j.tcs.2015.07.046.
  4. Holger Bock Axelsen & Robert Glück (2011): What do reversible programs compute?. In: Martin Hofmann: FoSSaCS 2011, LNCS 6604. Springer, pp. 42–56, doi:10.1007/978-3-642-19805-2.
  5. Holger Bock Axelsen & Robin Kaarsgaard (2016): Join Inverse Categories as Models of Reversible Recursion. In: Foundations of Software Science and Computation Structures 2016, LNCS 9634. Springer, pp. 73–90, doi:10.1007/978-3-642-29517-1.
  6. Michael Barr (1992): Algebraically compact functors. Journal of Pure and Applied Algebra 82(3), pp. 211–231, doi:10.1016/0022-4049(92)90169-G.
  7. Charles H. Bennett (1973): Logical reversibility of computation. IBM Journal of Research and Development 17(6), pp. 525–532, doi:10.1147/rd.176.0525.
  8. Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul Dillenschneider & Eric Lutz (2012): Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483(7388), pp. 187–189, doi:10.1143/JPSJ.66.3326.
  9. William J. Bowman, Roshan P. James & Amr Sabry (2011): Dagger traced symmetric monoidal categories and reversible programming. Work-in-progress report presented at the 3rd International Workshop on Reversible Computation.
  10. Jacques Carette & Amr Sabry (2016): Computing with semirings and weak rig groupoids. In: Proceedings of the 25th European Symposium on Programming (ESOP 2016). Springer, pp. 123–148, doi:10.1007/978-3-662-49498-1.
  11. Chao-Hong Chen & Amr Sabry (2021): A Computational Interpretation of Compact Closed Categories: Reversible Programming with Negative and Fractional Types. Proc. ACM Program. Lang. 5(POPL), doi:10.1016/j.tcs.2015.07.046.
  12. J. R. B. Cockett & Stephen Lack (2002): Restriction categories I: Categories of partial maps. Theoretical Computer Science 270(1–2), pp. 223–259, doi:10.1016/S0304-3975(00)00382-0.
  13. J. Robin B. Cockett & Stephen Lack (2003): Restriction categories II: Partial map classification. Theoretical Computer Science 294(1), pp. 61–102, doi:10.1016/S0304-3975(01)00245-6.
  14. Robin Cockett & Richard Garner (2014): Restriction categories as enriched categories. Theoretical Computer Science 523, pp. 37–55, doi:10.1016/j.tcs.2013.12.018.
  15. Robin Cockett & Stephen Lack (2007): Restriction categories III: Colimits, partial limits and extensivity. Mathematical Structures in Computer Science 17(04), pp. 775–817, doi:10.1016/S1571-0661(05)80303-2.
  16. Ioana Cristescu, Jean Krivine & Daniele Varacca (2013): A compositional semantics for the reversible p-calculus. In: Logic in Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium on. IEEE, pp. 388–397, doi:10.1109/LICS.2013.45.
  17. Edward Fredkin & Tommaso Toffoli (1982): Conservative logic. International Journal of Theoretical Physics 21(3-4), pp. 219–253, doi:10.1007/BF01857727.
  18. Brett Gordon Giles (2014): An investigation of some theoretical aspects of reversible computing. University of Calgary.
  19. Robert Glück & Robin Kaarsgaard (2018): A categorical foundation for structured reversible flowchart languages: Soundness and adequacy. Logical Methods in Computer Science Volume 14, Issue 3, doi:10.23638/LMCS-14(3:16)2018.
  20. Robert Glück, Robin Kaarsgaard & Tetsuo Yokoyama (2019): Reversible Programs Have Reversible Semantics. In: Formal Methods. FM 2019 International Workshops, Lecture Notes in Computer Science 12233, pp. 413–427, doi:10.1016/j.tcs.2015.07.046.
  21. Xiuzhan Guo (2012): Products, Joins, Meets, and Ranges in Restriction Categories. University of Calgary.
  22. Chris Heunen (2013): On the functor ^2. In: Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Springer, pp. 107–121, doi:10.1016/S0022-4049(02)00141-X.
  23. Chris Heunen & Robin Kaarsgaard (2021): Quantum Information Effects. ArXiv:2107.12144.
  24. Peter Mark Hines (1998): The Algebra of Self-Similarity and its Applications. University of Wales, Bangor.
  25. Petur Andrias Højgaard Jacobsen, Robin Kaarsgaard & Michael Kirkedal Thomsen (2018): CoreFun: A Typed Functional Reversible Core Language. In: International Conference on Reversible Computation. Springer, pp. 304–321, doi:10.1016/j.tcs.2015.07.046.
  26. Roshan P. James & Amr Sabry (2012): Information Effects. In: Principles of Programming Languages 2012, Proceedings. ACM, pp. 73–84, doi:10.1145/2103656.2103667.
  27. Roshan P. James & Amr Sabry (2014): Theseus: A High Level Language for Reversible Computing. Reversible Computing 2014.
  28. Robin Kaarsgaard, Holger Bock Axelsen & Robert Glück (2017): Join inverse categories and reversible recursion. Journal of Logical and Algebraic Methods in Programming 87, pp. 33–50, doi:10.1016/j.jlamp.2016.08.003.
  29. Robin Kaarsgaard & Niccolò Veltri (2019): En Garde! Unguarded Iteration for Reversible Computation in the Delay Monad. In: Proceedings of the 13th International Conference on Mathematics of Program Construction (MPC 2019). Springer, pp. 366–384, doi:10.1007/978-3-030-33636-3.
  30. Martti Karvonen (2019): The Way of the Dagger. University of Edinburgh.
  31. J. Kastl (1979): Inverse categories. In: Hans-Jürgen Hoehnke: Algebraische Modelle, Kategorien und Gruppoide. Akademie Verlag, Berlin, pp. 51–60.
  32. Martin Kutrib & Andreas Malcher (2010): Reversible pushdown automata. In: A.-H. Dediu, H. Fernau & C. Martín-Vide: LATA 2010, LNCS 6031. Springer-Verlag, pp. 368–379, doi:10.1007/978-3-642-13089-2.
  33. Martin Kutrib & Matthias Wendlandt (2015): Reversible limited automata. In: J. Durand-Lose & B. Nagy: MCU 2015, LNCS 9288. Springer, pp. 113–128, doi:10.1007/978-3-319-23111-2.
  34. Rolf Landauer (1961): Irreversibility and heat generation in the computing process. IBM journal of research and development 5(3), pp. 183–191, doi:10.1147/rd.53.0183.
  35. Mark V Lawson (1998): Inverse Semigroups: The Theory of Partial Symmetries. World Scientific, doi:10.1142/3645.
  36. Octavio Malherbe, Philip Scott & Peter Selinger (2013): Presheaf models of quantum computation: an outline. In: Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Springer, pp. 178–194, doi:10.1007/978-3-540-78499-9.
  37. Gordon E Moore (2006): Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff.. IEEE Solid-State Circuits Newsletter 3(20), pp. 33–35, doi:10.1109/N-SSC.2006.4785860.
  38. Mathys Rennela & Sam Staton (2015): Complete positivity and natural representation of quantum computations. In: MFPS XXXI 319. Electronic Notes in Theoretical Computer Science, pp. 369–385, doi:10.1016/j.entcs.2015.12.022.
  39. Mathys Rennela & Sam Staton (2018): Classical control and quantum circuits in enriched category theory. Electronic Notes in Theoretical Computer Science 336, pp. 257–279, doi:10.1016/j.entcs.2018.03.027.
  40. Mathys Rennela, Sam Staton & Robert Furber (2017): Infinite-Dimensionality in Quantum Foundations: W*-algebras as Presheaves over Matrix Algebras. In: QPL'16, Electronic Proceedings in Theoretical Computer Science 236. Open Publishing Association, pp. 161–173, doi:10.4204/EPTCS.236.11.
  41. Markus Schordan, David Jefferson, Peter Barnes, Tomas Oppelstrup & Daniel Quinlan (2015): Reverse Code Generation for Parallel Discrete Event Simulation. In: Jean Krivine & Jean-Bernard Stefani: RC 2015, LNCS 9138. Springer, pp. 95–110, doi:10.1007/978-3-319-20860-2.
  42. Ulrik Schultz, Mirko Bordignon & Kasper Stoy (2011): Robust and reversible execution of self-reconfiguration sequences. Robotica 29(01), pp. 35–57, doi:10.1145/345910.345920.
  43. Ulrik Pagh Schultz, Johan Sund Laursen, Lars-Peter Ellekilde & Holger Bock Axelsen (2015): Towards a Domain-Specific Language for Reversible Assembly Sequences. In: Reversible Computation. Springer, pp. 111–126, doi:10.1147/rd.456.0807.
  44. Tommaso Toffoli (1980): Reversible Computing. In: Proceedings of the Colloquium on Automata, Languages and Programming. Springer Verlag, pp. 632–644, doi:10.1007/3-540-10003-2.
  45. Tetsuo Yokoyama, Holger Bock Axelsen & Robert Glück (2012): Towards a reversible functional language. In: Alexis De Vos & Robert Wille: RC 2011, LNCS 7165. Springer, pp. 14–29, doi:10.1007/978-3-642-29517-1.
  46. Tetsuo Yokoyama & Robert Glück (2007): A Reversible Programming Language and Its Invertible Self-interpreter. In: PEPM '07, Proceedings. ACM, pp. 144–153, doi:10.1145/1244381.1244404.

Comments and questions to:
For website issues: