1. I. Bloch (2002): Modal Logics Based on Mathematical Morphology for Qualitative Spatial Reasoning. Journal of Applied Non-Classical Logics 12(3–4), pp. 399–423, doi:10.3166/jancl.12.399-423.
  2. S. Celani & R. Jansana (1997): A new semantics for positive modal logic. Notre Dame Journal of Formal Logic 38(1), pp. 1–19, doi:10.1305/ndjfl/1039700693.
  3. A. G. Cohn & J. Renz (2008): Qualitative Spatial Representation and Reasoning. In: F. van Harmelen, V. Lifschitz & B. Porter: Handbook of knowledge representation. Elsevier, pp. 551–596, doi:10.1016/S1574-6526(07)03013-1.
  4. W. Conradie, Y. Fomatati, A. Palmigiano & S. Sourabh (2015): Algorithmic Correspondence for Intuitionistic Modal Mu-calculus. Theoretical Computer Science 564, pp. 30–62, doi:10.1016/j.tcs.2014.10.027.
  5. J. Cousty, L. Najman, F. Dias & J. Serra (2013): Morphological Filtering on Graphs. Computer Vision and Image Understanding 117, pp. 370–385, doi:10.1016/j.cviu.2012.08.016.
  6. L. Esakia (2006): The modalized Heyting calculus: a conservative modal expantion of the intuitionistic logic. Journal of Applied Non-Classical Logic 16(3-4), pp. 349–366, doi:10.3166/jancl.16.349-366.
  7. W. B. Ewald (1986): Intuitionistic Tense and Modal Logic. Journal of Symbolic Logic 51(1), pp. 166–179, doi:10.2307/2273953.
  8. M. Gehrke, H. Nagahashi & Y. Venema (2005): A Sahlqvist theorem for distributive modal logic. Annals of Pure and Applied Logic 131, pp. 65–102, doi:10.1016/j.apal.2004.04.007.
  9. S. Ghilardi & G. Meloni (1997): Constructive canonicity in non-classical logics. Annals of Pure and Applied Logic 86, pp. 1–32, doi:10.1016/S0168-0072(96)00048-6.
  10. R. Goré, L. Postniece & A. Tiu (2010): Cut-elimination and Proof Search for Bi-Intuitionistic Tense Logic. In: Advances in Modal Logic, pp. 156–177.
  11. Y. Hasimoto (2001): Finite Model Property for Some Intuitionistic Modal Logics. Bulletin of the Section of Logic 30(2), pp. 87–97. Available at
  12. L. Najman & H. Talbot (2010): Mathematical Morphology. From theory to applications. Wiley.
  13. Hiroakira Ono (1977): On some intuitionistic modal logics. Publications of the Research Institute for Mathematical Sciences 13(3), pp. 687–722, doi:10.2977/prims/1195189604. Available at
  14. C. Rauszer (1974): Semi-Boolean algebras and their applications to intuitionistic logic with dual operations. Fundamenta Mathematicae LXXXIII, pp. 219–249. Available at
  15. V. H. Sotirov (1980): Modal Theories with Intuitionistic Logic. In: Proceedings of the Conference on Mathematical Logic, Sofia, 1980. Bulgarian Academy of Sciences, pp. 139–171.
  16. J. G. Stell (2015): Symmetric Heyting Relation Algebras with Applications to Hypergraphs. Journal of Logical and Algebraic Methods in Programming 84, pp. 440–455, doi:10.1016/j.jlamp.2014.12.001.
  17. J. G. Stell, R. A. Schmidt & D. Rydeheard (2016): A bi-intuitionistic modal logic: Foundations and automation. Journal of Logical and Algebraic Methods in Programming 85(4), pp. 500–519, doi:10.1016/j.jlamp.2015.11.003.
  18. F. Wolter & M. Zakharyaschev (1999): Intuitionistic Modal Logic. In: Andrea Cantini: Logic and Foundations of Mathematics. Kluwer Academic Publishers, pp. 227–238, doi:10.1007/978-94-017-2109-7_17.

Comments and questions to:
For website issues: