1. Sanjeev Arora & Boaz Barak (2009): Computational Complexity: A Modern Approach, 1st edition. Cambridge University Press, New York, NY, USA, doi:10.1017/CBO9780511804090.
  2. Federico Aschieri & Margherita Zorzi (2013): Non-determinism, Non-termination and the Strong Normalization of System T. In: Typed Lambda Calculi and Applications, 11th International Conference, TLCA 2013, Eindhoven, The Netherlands, June 26-28, 2013. Lecture Notes in Computer Science, 7941, pp. 31–47, doi:10.1007/978-3-642-38946-7_5.
  3. Federico Aschieri & Margherita Zorzi (2016): On natural deduction in classical first-order logic: Curry-Howard correspondence, strong normalization and Herbrand's theorem. Theoretical Computer Science 625, pp. 125–146, doi:10.1016/j.tcs.2016.02.028.
  4. Ugo Dal Lago & Margherita Zorzi (2012): Probabilistic operational semantics for the lambda calculus. RAIRO - Theoretical Informatics and Applications 46(3), pp. 413–450, doi:10.1051/ita/2012012.
  5. Vincent Danos & Russell S. Harmer (2002): Probabilistic Game Semantics. ACM Trans. Comput. Logic 3(3), pp. 359–382, doi:10.1145/507382.507385.
  6. Alejandro Díaz-Caro, Pablo Arrighi, Manuel Gadella & Jonathan Grattage (2011): Measurements and Confluence in Quantum Lambda Calculi With Explicit Qubits. Electr. Notes Theor. Comput. Sci. 270(1), pp. 59–74, doi:10.1016/j.entcs.2011.01.006.
  7. Jonathan Grattage (2011): An Overview of QML With a Concrete Implementation in Haskell. Electr. Notes Theor. Comput. Sci. 270(1), pp. 165–174, doi:10.1016/j.entcs.2011.01.015.
  8. Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger & Benoît Valiron (2013): Quipper: A Scalable Quantum Programming Language. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '13. ACM, New York, NY, USA, pp. 333–342, doi:10.1145/2491956.2462177.
  9. Phillip Kaye, Raymond Laflamme & Michele Mosca (2007): An introduction to quantum computing. Oxford University Press, Oxford.
  10. E. Knill (1996): Conventions for quantum pseudocode. Technical Report. Los Alamos National Laboratory. Technical Report.
  11. Ugo Dal Lago & Margherita Zorzi (2014): Wave-Style Token Machines and Quantum Lambda Calculi. In: Proceedings Third International Workshop on Linearity, LINEARITY 2014, Vienna, Austria, 13th July, 2014, Electronic Proceedings in Theoretical Computer Science 176, pp. 64–78, doi:10.4204/EPTCS.176.6.
  12. Mohamed Yousri Mahmoud & Amy P. Felty (2018): Formal Meta-level Analysis Framework for Quantum Programming Languages. Electr. Notes Theor. Comput. Sci. 338, pp. 185–201, doi:10.1016/j.entcs.2018.10.012.
  13. Andrea Masini, Luca Viganò & Margherita Zorzi (2011): Modal Deduction Systems for Quantum State Transformations. Multiple-Valued Logic and Soft Computing 17(5-6), pp. 475–519. Available at
  14. Michael A. Nielsen & Isaac L. Chuang (2010): Quantum computation and quantum information, 10h Anniversary Edition. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511976667.
  15. Peter W. O'Hearn & Robert D. Tennent (1997): Algol-like Languages.. Progress in Theoretical Computer Science. Birkhauser. Two volumes..
  16. C.-H.L. Ong (2004): An approach to deciding the observational equivalence of Algol-like languages. Annals of Pure and Applied Logic 130(1), pp. 125 – 171, doi:10.1016/j.apal.2003.12.006.
  17. Michele Pagani, Peter Selinger & Benoît Valiron (2014): Applying quantitative semantics to higher-order quantum computing. In: Proceedings of POPL '14. ACM, pp. 647–658, doi:10.1145/2535838.2535879.
  18. L. Paolini, M. Piccolo & M. Zorzi (2019): QPCF: higher order languages and quantum circuits. Journal of Automated Reasoning. To appear..
  19. Luca Paolini (2006): A stable programming language. Information and Computation 204(3), pp. 339 – 375, doi:10.1016/j.ic.2005.11.002.
  20. Luca Paolini, Mauro Piccolo & Luca Roversi (2016): A Class of Reversible Primitive Recursive Functions. Electronic Notes in Theoretical Computer Science 322(18605), pp. 227–242, doi:10.1016/j.entcs.2016.03.016.
  21. Luca Paolini, Mauro Piccolo & Luca Roversi (2018): On a Class of Reversible Primitive Recursive Functions and Its Turing-Complete Extensions. New Generation Computing 36(3), pp. 233–256, doi:10.1007/s00354-018-0039-1.
  22. Luca Paolini & Margherita Zorzi (2017): qPCF: a language for quantum circuit computations. In: Theory and Applications of Models of Computation, Lecture Notes in Computer Science 10185. Springer, pp. 455–469, doi:10.1007/978-3-319-55911-7_33.
  23. Jennifer Paykin, Robert Rand & Steve Zdancewic (2017): QWIRE: A Core Language for Quantum Circuits. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017. ACM, New York, NY, USA, pp. 846–858, doi:10.1145/3009837.3009894.
  24. Benjamin C. Pierce (2002): Types and Programming Languages. The MIT Press.
  25. Andrew M. Pitts (1997): Reasoning About Local Variables with Operationally-Based Logical Relations. In: Algol-like Languages, chapter 17, Progress in Theoretical Computer Science. Birkhäuser, pp. 165–185, doi:10.1007/978-1-4757-3851-3_7.
  26. Robert Rand, Jennifer Paykin & Steve Zdancewic (2017): QWIRE Practice: Formal Verification of Quantum Circuits in Coq. In: Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, EPTCS 266, pp. 119–132, doi:10.4204/EPTCS.266.8.
  27. Francisco Rios & Peter Selinger (2018): A Categorical Model for a Quantum Circuit Description Language. In: Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, EPTCS 266. Open Publishing Association, pp. 164–178, doi:10.4204/EPTCS.266.11.
  28. Neil J. Ross (2015): Algebraic and Logical Methods in Quantum Computation. Department of Mathematics and Statistics, Dalhousie University. Available from arXiv:1510.02198..
  29. Peter Selinger (2004): Towards a Quantum Programming Language. Mathematical Structures in Computer Science 14(4), pp. 527–586, doi:10.1017/S0960129504004256.
  30. Peter Selinger & Benoit Valiron (2006): A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16, pp. 527–552, doi:10.1017/S0960129506005238.
  31. Peter Selinger & Benoît Valiron (2009): Semantic Techniques in Quantum Computation, chapter Quantum lambda calculus, pp. pp. 135–172. Cambridge University Press, doi:10.1017/CBO9781139193313.
  32. Daniel R. Simon (1994): On the Power of Quantum Computation. SIAM Journal on Computing 26, pp. 116–123, doi:10.1137/S0097539796298637.
  33. Benoît Valiron, Neil J. Ross, Peter Selinger, D. Scott Alexander & Jonathan M. Smith (2015): Programming the Quantum Future. Commun. ACM 58(8), pp. 52–61, doi:10.1145/2699415.
  34. Luca Viganò, Marco Volpe & Margherita Zorzi (2014): Quantum state transformations and branching distributed temporal logic. In: Logic, Language, Information, and Computation - 21st International Workshop, WoLLIC 2014, Valparaíso, Chile, September 1-4, 2014, Lecture Notes in Computer Science 8652. Springer, pp. 1–19, doi:10.1007/978-3-662-44145-9_1.
  35. Luca Viganò, Marco Volpe & Margherita Zorzi (2017): A branching distributed temporal logic for reasoning about entanglement-free quantum state transformations. Information & Computation 255, pp. 311–333, doi:10.1016/j.ic.2017.01.007.
  36. Margherita Zorzi (2016): On quantum lambda calculi: a foundational perspective. Mathematical Structures in Computer Science 26(7), pp. 1107–1195, doi:10.1017/S0960129514000425.

Comments and questions to:
For website issues: