1. Seth Chaiken, Neil V. Murray & Erik Rosenthal (1989): An application of P4-free graphs in theorem-proving. Annals of the New York Academy of Sciences 555(1), pp. 106–121, doi:10.1111/j.1749-6632.1989.tb22442.x.
  2. D. G. Corneil, H. Lerchs & L. Stewart Burlingham (1981): Complement reducible graphs. Discrete Applied Mathematics 3(3), pp. 163–174, doi:10.1016/0166-218X(81)90013-5.
  3. Thomas Ehrhard (2014): A new correctness criterion for MLL proof nets. In: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, Vienna, Austria, July 14 - 18, 2014, pp. 38:1–38:10, doi:10.1145/2603088.2603125.
  4. Thomas Ehrhard (2017): An introduction to differential linear logic: proof-nets, models and antiderivatives. Mathematical Structures in Computer Science, pp. 1–66, doi:10.1017/S0960129516000372.
  5. Thomas Ehrhard & Laurent Regnier (2006): Differential interaction nets. Theoretical Computer Science 364(2), pp. 166–195, doi:10.1016/j.tcs.2006.08.003.
  6. Jean-Yves Girard (1987): Multiplicatives. Rendiconti del Seminario Matematico. Universitá e Politecnico di Torino 45(Special Issue).
  7. Jean-Yves Girard (1989): Towards a Geometry of Interaction. In: J. W. Gray & A. Scedrov: Categories in Computer Science and Logic: Proc. of the Joint Summer Research Conference. American Mathematical Society, Providence, RI, pp. 69–108, doi:10.1090/conm/092/1003197.
  8. Jean-Yves Girard (1996): Proof-nets: The parallel syntax for proof-theory. In: Logic and Algebra. Marcel Dekker, pp. 97–124.
  9. Jean-Yves Girard (2011): Geometry of Interaction V: Logic in the hyperfinite factor. Theoretical Computer Science 412(20), pp. 1860–1883, doi:10.1016/j.tcs.2010.12.016.
  10. Michel Habib & Christophe Paul (2010): A survey of the algorithmic aspects of modular decomposition. Computer Science Review 4(1), pp. 41–59, doi:10.1016/j.cosrev.2010.01.001.
  11. Dominic Hughes & Willem Heijltjes (2016): Conflict nets:efficient locally canonical MALL proof nets. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2016. ACM, New York, U. S. A., pp. 437–446, doi:10.1145/2933575.2934559.
  12. Dominic J. D. Hughes & Rob J. Van Glabbeek (2005): Proof Nets for Unit-free Multiplicative-additive Linear Logic. ACM Transactions on Computational Logic 6(4), pp. 784–842, doi:10.1145/1094622.1094629.
  13. Dominic J.D. Hughes (2006): Proofs Without Syntax. Annals of Mathematics 143(3), pp. 1065–1076, doi:10.4007/annals.2006.164.1065.
  14. Martin Hyland & Andrea Schalk (2003): Glueing and orthogonality for models of linear logic. Theoretical Computer Science 294(1), pp. 183–231, doi:10.1016/S0304-3975(01)00241-9.
  15. G. M. Kelly & M. L. Laplaza (1980): Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, pp. 193–213, doi:10.1016/0022-4049(80)90101-2.
  16. Ganna Kudryavtseva & Volodymyr Mazorchuk (2009): On three approaches to conjugacy in semigroups. Semigroup Forum 78(1), pp. 14–20, doi:10.1007/s00233-008-9047-7.
  17. François Maurel (2003): Nondeterministic Light Logics and NP-Time. In: Typed Lambda Calculi and Applications, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 241–255, doi:10.1007/3-540-44904-3_17.
  18. Alberto Naibo, Mattia Petrolo & Thomas Seiller (2016): On the Computational Meaning of Axioms, pp. 141–184. Springer International Publishing, doi:10.1007/978-3-319-26506-3_5.
  19. Michele Pagani (2012): Visible acyclic differential nets, Part I: Semantics. Annals of Pure and Applied Logic 163(3), pp. 238–265, doi:10.1016/j.apal.2011.09.001.
  20. Christian Retoré (2003): Handsome proof-nets: perfect matchings and cographs. Theoretical Computer Science 294(3), pp. 473–488, doi:10.1016/S0304-3975(01)00175-X.
  21. Thomas Seiller (2012): Interaction graphs: Multiplicatives. Annals of Pure and Applied Logic 163(12), pp. 1808–1837, doi:10.1016/j.apal.2012.04.005.
  22. Thomas Seiller (2012): Logique dans le Facteur Hyperfini: Géométrie de l'Interaction et Complexité. Thèse de doctorat. Aix-Marseille Université. Available at
  23. Thomas Seiller (2016): Interaction graphs: Additives. Annals of Pure and Applied Logic 167(2), pp. 95–154, doi:10.1016/j.apal.2015.10.001.
  24. Thomas Seiller (2017): Interaction graphs: Graphings. Annals of Pure and Applied Logic 168(2), pp. 278–320, doi:10.1016/j.apal.2016.10.007.

Comments and questions to:
For website issues: