References

  1. S. Abramsky, E. Haghverdi & P.J. Scott (2002): Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science 12(5), pp. 625–665, doi:10.1017/S0960129502003730.
  2. A. Barber, P. Gardner, M. Hasegawa & G. Plotkin (1998): From action calculi to linear logic. In: Computer Science Logic (CSL'97), Selected Papers, Lecture Notes in Computer Science 1414. Springer-Verlag, pp. 78–97, doi:10.1007/BFb0028008.
  3. A. Barber & G.D. Plotkin (1997): Dual intuitionistic linear logic. Unpublished draft. An early version appeared as a technical report ECS-LFCS-96-347, LFCS, University of Edinburgh..
  4. M. Barr (1979): *-Autonomous Categories. Lecture Notes in Mathematics 752. Springer-Verlag, doi:10.1007/BFb0064582.
  5. G.M. Bierman (1995): What is a categorical model of intuitionistic linear logic?. In: Proceedings of TLCA'95, Lecture Notes in Computer Science 902. Springer-Verlag, pp. 78–93, doi:10.1007/BFb0014046.
  6. P. Gardner & M. Hasegawa (1997): Types and models for higher-order action calculi. In: Proceedings of TACS'97, Lecture Notes in Computer Science 1281. Springer-Verlag, pp. 583–603, doi:10.1007/BFb0014569.
  7. J.-Y. Girard (1987): Linear logic. Theoretical Computer Science 50, pp. 1–102, doi:10.1016/0304-3975(87)90045-4.
  8. J.-Y. Girard (1989): Towards a geometry of interaction. In: Categories in Computer Science and Logic, Contemporary Mathematics 92. AMS, pp. 69–108, doi:10.1090/conm/092/1003197.
  9. M. Hasegawa (1997): Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi. In: Proceedings of TLCA'97, Lecture Notes in Computer Science 1210. Springer-Verlag, pp. 196–213, doi:10.1007/3-540-62688-3_37.
  10. M. Hasegawa (1999): Categorical glueing and logical predicates for models of linear logic. Available at http://www.kurims.kyoto-u.ac.jp/~hassei/papers/full.pdf. Preprint RIMS-1223.
  11. M. Hasegawa (1999): Models of Sharing Graphs: A Categorical Semantics of let and letrec. Distingushed Dissertations Series. Springer-Verlag, doi:10.1007/978-1-4471-0865-8. Also available as PhD thesis ECS-LFCS-97-360, LFCS, University of Edinburgh.
  12. M. Hasegawa (2005): Classical linear logic of implications. Mathematical Structures in Computer Science 15(2), pp. 323–342, doi:10.1017/S0960129504004621.
  13. M. Hasegawa (2009): On traced monoidal closed categories. Mathematical Structures in Computer Science 19(2), pp. 217–244, doi:10.1017/S0960129508007184.
  14. J.M.E. Hyland & A. Schalk (2003): Glueing and orthogonality for models of linear logic. Theoretical Computer Science 294(1-2), pp. 183–231, doi:10.1016/S0304-3975(01)00241-9.
  15. A. Joyal, R. Street & D. Verity (1996): Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119(3), pp. 447–468, doi:10.1017/S0305004100074338.
  16. G.M. Kelly & S. Mac Lane (1971): Coherence in closed categories. Journal of Pure and Applied Algebra 1(1), pp. 97–140, doi:10.1016/0022-4049(71)90013-2.
  17. J. Laird (2005): A game semantics of the asynchronous π-calculus. In: Proceedings of CONCUR 2005, Lecture Notes in Computer Science 3653. Springer, pp. 51–65, doi:10.1007/11539452_8.
  18. P.-A. Melliès (2009): Categorical semantics of linear logic. In: Interactive Models of Computation and Program Behavior, Panoramas et Synthèses 27. Société Mathématique de France, pp. 1–196.
  19. P.-A. Melliès & N. Tabareau (2010): Resource modalities in tensor logic. Annals in Pure and Applied Logic 161(5), pp. 632–653, doi:10.1016/j.apal.2009.07.018.
  20. R. Milner (1996): Calculi for interaction. Acta Inf. 33(8), pp. 707–737, doi:10.1007/BF03036472.
  21. E. Moggi (1989): Computational lambda-calculus and monads. In: Proceedings of LICS'89. IEEE Computer Society, pp. 14–23, doi:10.1109/LICS.1989.39155.
  22. J. Power & H. Thielecke (1999): Closed Freyd- and kappa-categories. In: Proceedings of ICALP'99, Lecture Notes in Computer Science 1644. Springer-Verlag, pp. 625–634, doi:10.1007/3-540-48523-6_59.
  23. K. Sakayori & T.Tsukada (2017): A truly concurrent game model of the asynchronous π-calculus. In: Proceedings of FOSSACS 2017, Lecture Notes in Computer Science 10203. Springer-Verlag, pp. 389–406, doi:10.1007/978-3-662-54458-7_23.
  24. U. Schöpp (2014): On the relation of interaction semantics to continuations and defunctionalization. Logical Methods in Computer Science 10(4), doi:10.2168/LMCS-10(4:10)2014.
  25. R.A.G. Seely (1989): Linear logic, *-autonomous categories and cofree coalgebras. In: Categories in Computer Science and Logic, Contemporary Mathematics 92. AMS, pp. 371–389, doi:10.1090/conm/092/1003210.
  26. T. Streicher & B. Reus (1998): Classical logic, continuation semantics and abstract machines. Journal of Functional Programming 8(6), pp. 543–572, doi:10.1017/S0956796898003141.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org