Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio (2017):
An algebraic view of super-Belnap logics.
Studia Logica 105,
pp. 1–36,
doi:10.1007/s11225-017-9739-7.
Arnon Avron, Ofer Arieli & Anna Zamansky (2018):
Theory of Effective Propositional Paraconsistent Logics.
Studies in Logic.
College Publications.
Raymond Balbes & Philip Dwinger (1975):
Distributive Lattices.
University of Missouri Press.
Eduardo Alejandro Barrio & Walter Carnielli (2019):
Volume I: Recovery Operators in Logics of Formal Inconsistency (special issue).
Logic Journal of the IGPL 28(5),
pp. 615–623,
doi:10.1093/jigpal/jzy053.
Nuel D. Belnap (1977):
A useful four-valued logic.
In: Modern Uses of Multiple-Valued Logic.
Springer Netherlands,
Dordrecht,
pp. 5–37,
doi:10.1007/978-94-010-1161-7_2.
Carlos Caleiro & Sérgio Marcelino (2019):
Analytic calculi for monadic PNmatrices.
In: R. Iemhoff, M. Moortgat & R. Queiroz: Logic, Language, Information and Computation (WoLLIC 2019),
LNCS 11541.
Springer,
pp. 84–98,
doi:10.1007/978-3-662-59533-6_6.
Liliana M. Cantú (2019):
Sobre la Lógica que Preserva Grados de Verdad Asociada a las Álgebras de Stone Involutivas.
Universidad Nacional del Sur,
Bahía Blanca, Argentina.
Rudolf Carnap (1943):
Formalization of Logic.
Harvard University Press.
Walter A. Carnielli, Marcelo E. Coniglio & João Marcos (2007):
Logics of Formal Inconsistency.
In: D. Gabbay & F. Guenthner: Handbook of Philosophical Logic,
2nd edition 14.
Springer,
pp. 1–93,
doi:10.1007/978-1-4020-6324-4_1.
Roberto Cignoli & Marta S. De Gallego (1983):
Dualities for some De Morgan algebras with operators andŁ ukasiewicz algebras.
Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 34(3),
pp. 377393,
doi:10.1017/S1446788700023806.
B. A. Davey & H. A. Priestley (2002):
Introduction to Lattices and Order, Second Edition,
2 edition.
Cambridge University Press,
doi:10.1017/CBO9780511809088.
Adriano Dodó & João Marcos (2014):
Negative modalities, consistency and determinedness.
Electronic Notes in Theoretical Computer Science 300,
pp. 21–45,
doi:10.1016/j.entcs.2013.12.010.
Francesc Esteva, Aldo Figallo-Orellano, Tommaso Flaminio & Lluis Godo (2021):
Logics of formal inconsistency based on distributive involutive residuated lattices.
Journal of Logic and Computation 31,
pp. 12261265,
doi:10.1093/logcom/exab029.
Josep Maria Font (2016):
Abstract Algebraic Logic: An introductory textbook.
College Publications.
Ori Lahav, João Marcos & Yoni Zohar (2017):
Sequent systems for negative modalities.
Logica Universalis 11,
pp. 345382,
doi:10.1007/s11787-017-0175-2.
Jan Łukasiewicz (1930):
Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls.
Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie 23,
pp. 57–77.
Sérgio Marcelino & Umberto Rivieccio (2021):
Logics of involutive Stone algebras.
Soft Computing (in print).
Preprint available at https://arxiv.org/abs/2102.05455.
Sérgio Marcelino & Carlos Caleiro (2021):
Axiomatizing non-deterministic many-valued generalized consequence relations.
Synthese 198,
pp. 53735390,
doi:10.1007/s11229-019-02142-8.
João Marcos (2005):
Nearly every normal modal logic is paranormal.
Logique et Analyse 48,
pp. 279–300.
João Marcos (2007):
Ineffable inconsistencies.
In: J.-Y. Béziau, W. Carnielli & D. M. Gabbay: Handbook of Paraconsistency.
College Publications,
pp. 301–311.
António Monteiro (1980):
Sur les algèbres de Heyting symétriques.
Portugaliae Mathematica 39(1-4),
pp. 1–237.
Available at http://eudml.org/doc/115416.
Adam Přenosil (2021):
The lattice of super-Belnap logics.
The Review of Symbolic Logic,
pp. 150,
doi:10.1017/S1755020321000204.
Umberto Rivieccio (2012):
An infinity of super-Belnap logics.
Journal of Applied Non-Classical Logics 22(4),
pp. 319–335,
doi:10.1080/11663081.2012.737154.
Hanamantagouda P. Sankappanavar (1987):
Heyting Algebras with a Dual Lattice Endomorphism.
Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33(6),
pp. 565–573,
doi:10.1002/malq.19870330610.
D. J. Shoesmith & T. J. Smiley (1978):
Multiple-Conclusion Logic.
Cambridge University Press,
doi:10.1017/CBO9780511565687.