References

  1. Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio (2017): An algebraic view of super-Belnap logics. Studia Logica 105, pp. 1–36, doi:10.1007/s11225-017-9739-7.
  2. Arnon Avron, Ofer Arieli & Anna Zamansky (2018): Theory of Effective Propositional Paraconsistent Logics. Studies in Logic. College Publications.
  3. Raymond Balbes & Philip Dwinger (1975): Distributive Lattices. University of Missouri Press.
  4. Eduardo Alejandro Barrio & Walter Carnielli (2019): Volume I: Recovery Operators in Logics of Formal Inconsistency (special issue). Logic Journal of the IGPL 28(5), pp. 615–623, doi:10.1093/jigpal/jzy053.
  5. Nuel D. Belnap (1977): A useful four-valued logic. In: Modern Uses of Multiple-Valued Logic. Springer Netherlands, Dordrecht, pp. 5–37, doi:10.1007/978-94-010-1161-7_2.
  6. Carlos Caleiro & Sérgio Marcelino (2019): Analytic calculi for monadic PNmatrices. In: R. Iemhoff, M. Moortgat & R. Queiroz: Logic, Language, Information and Computation (WoLLIC 2019), LNCS 11541. Springer, pp. 84–98, doi:10.1007/978-3-662-59533-6_6.
  7. Liliana M. Cantú (2019): Sobre la Lógica que Preserva Grados de Verdad Asociada a las Álgebras de Stone Involutivas. Universidad Nacional del Sur, Bahía Blanca, Argentina.
  8. Liliana M. Cantú & Martín Figallo (2018): On the logic that preserves degrees of truth associated to involutive Stone algebras. Logic Journal of the IGPL 28(5), pp. 1000–1020, doi:10.1093/jigpal/jzy071. ArXiv:https://academic.oup.com/jigpal/article-pdf/28/5/1000/33791957/jzy071.pdf.
  9. Rudolf Carnap (1943): Formalization of Logic. Harvard University Press.
  10. Walter A. Carnielli, Marcelo E. Coniglio & João Marcos (2007): Logics of Formal Inconsistency. In: D. Gabbay & F. Guenthner: Handbook of Philosophical Logic, 2nd edition 14. Springer, pp. 1–93, doi:10.1007/978-1-4020-6324-4_1.
  11. Roberto Cignoli & Marta S. De Gallego (1983): Dualities for some De Morgan algebras with operators andŁ ukasiewicz algebras. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 34(3), pp. 377393, doi:10.1017/S1446788700023806.
  12. B. A. Davey & H. A. Priestley (2002): Introduction to Lattices and Order, Second Edition, 2 edition. Cambridge University Press, doi:10.1017/CBO9780511809088.
  13. Adriano Dodó & João Marcos (2014): Negative modalities, consistency and determinedness. Electronic Notes in Theoretical Computer Science 300, pp. 21–45, doi:10.1016/j.entcs.2013.12.010.
  14. Francesc Esteva, Aldo Figallo-Orellano, Tommaso Flaminio & Lluis Godo (2021): Logics of formal inconsistency based on distributive involutive residuated lattices. Journal of Logic and Computation 31, pp. 12261265, doi:10.1093/logcom/exab029.
  15. Josep Maria Font (2016): Abstract Algebraic Logic: An introductory textbook. College Publications.
  16. Vitor Greati (2021): Logicantsy. https://github.com/greati/logicantsy.
  17. Lloyd Humberstone (2011): The Connectives. MIT Press, doi:10.7551/mitpress/9055.001.0001.
  18. Ori Lahav, João Marcos & Yoni Zohar (2017): Sequent systems for negative modalities. Logica Universalis 11, pp. 345382, doi:10.1007/s11787-017-0175-2.
  19. Jan Łukasiewicz (1930): Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie 23, pp. 57–77.
  20. Sérgio Marcelino & Umberto Rivieccio (2021): Logics of involutive Stone algebras. Soft Computing (in print). Preprint available at https://arxiv.org/abs/2102.05455.
  21. Sérgio Marcelino & Carlos Caleiro (2021): Axiomatizing non-deterministic many-valued generalized consequence relations. Synthese 198, pp. 53735390, doi:10.1007/s11229-019-02142-8.
  22. João Marcos (2005): Logics of Formal Inconsistency. Unicamp, Brazil & IST, Portugal. Available at https://www.math.tecnico.ulisboa.pt/~jmarcos/Thesis/.
  23. João Marcos (2005): Nearly every normal modal logic is paranormal. Logique et Analyse 48, pp. 279–300.
  24. João Marcos (2007): Ineffable inconsistencies. In: J.-Y. Béziau, W. Carnielli & D. M. Gabbay: Handbook of Paraconsistency. College Publications, pp. 301–311.
  25. António Monteiro (1980): Sur les algèbres de Heyting symétriques. Portugaliae Mathematica 39(1-4), pp. 1–237. Available at http://eudml.org/doc/115416.
  26. Adam Přenosil (2021): The lattice of super-Belnap logics. The Review of Symbolic Logic, pp. 150, doi:10.1017/S1755020321000204.
  27. Umberto Rivieccio (2012): An infinity of super-Belnap logics. Journal of Applied Non-Classical Logics 22(4), pp. 319–335, doi:10.1080/11663081.2012.737154.
  28. Hanamantagouda P. Sankappanavar (1987): Heyting Algebras with a Dual Lattice Endomorphism. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33(6), pp. 565–573, doi:10.1002/malq.19870330610.
  29. D. J. Shoesmith & T. J. Smiley (1978): Multiple-Conclusion Logic. Cambridge University Press, doi:10.1017/CBO9780511565687.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org