References

  1. Mordechai Ben-Ari (2012): Mathematical Logic for Computer Science. Springer, doi:10.1007/978-1-4471-4129-7.
  2. Joachim Breitner (2016): Visual Theorem Proving with the Incredible Proof Machine. In: Jasmin Christian Blanchette & Stephan Merz: Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016, Proceedings, Lecture Notes in Computer Science 9807. Springer, pp. 123–139, doi:10.1007/978-3-319-43144-4_8.
  3. Joachim Breitner & Denis Lohner (2016): The meta theory of the Incredible Proof Machine. Archive of Formal Proofs. https://isa-afp.org/entries/Incredible_Proof_Machine.html, Formal proof development.
  4. David M. Cerna, Rafael P. D. Kiesel & Alexandra Dzhiganskaya (2019): A Mobile Application for Self-Guided Study of Formal Reasoning. In: Pedro Quaresma, Walther Neuper & João Marcos: Proceedings 8th International Workshop on Theorem Proving Components for Educational Software, ThEdu@CADE 2019, Natal, Brazil, 25th August 2019, EPTCS 313, pp. 35–53, doi:10.4204/EPTCS.313.3.
  5. David M. Cerna, Martina Seidl, Wolfgang Schreiner, Wolfgang Windsteiger & Armin Biere (2020): Aiding an Introduction to Formal Reasoning Within a First-Year Logic Course for CS Majors Using a Mobile Self-Study App. In: Michail N. Giannakos, Guttorm Sindre, Andrew Luxton-Reilly & Monica Divitini: Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education, ITiCSE 2020, Trondheim, Norway, June 15-19, 2020. ACM, pp. 61–67, doi:10.1145/3341525.3387409.
  6. Arno Ehle, Norbert Hundeshagen & Martin Lange (2017): The Sequent Calculus Trainer with Automated Reasoning - Helping Students to Find Proofs. In: Pedro Quaresma & Walther Neuper: Proceedings 6th International Workshop on Theorem proving components for Educational software, ThEdu@CADE 2017, Gothenburg, Sweden, 6 August 2017, EPTCS 267, pp. 19–37, doi:10.4204/EPTCS.267.2.
  7. Asta Halkjær From, Alexander Birch Jensen, Anders Schlichtkrull & Jørgen Villadsen (2019): Teaching a Formalized Logical Calculus. In: Pedro Quaresma, Walther Neuper & João Marcos: Proceedings 8th International Workshop on Theorem Proving Components for Educational Software, ThEdu@CADE 2019, Natal, Brazil, 25th August 2019, EPTCS 313, pp. 73–92, doi:10.4204/EPTCS.313.5.
  8. Asta Halkjær From, Jørgen Villadsen & Patrick Blackburn (2020): Isabelle/HOL as a Meta-Language for Teaching Logic. In: Pedro Quaresma, Walther Neuper & João Marcos: Proceedings 9th International Workshop on Theorem Proving Components for Educational Software, ThEdu@IJCAR 2020, Paris, France, 29th June 2020, EPTCS 328, pp. 18–34, doi:10.4204/EPTCS.328.2.
  9. Asta Halkj\IeCæ r From (2019): A Sequent Calculus for First-Order Logic. Archive of Formal Proofs. https://isa-afp.org/entries/FOL_Seq_Calc1.html, Formal proof development.
  10. Asta Halkj\IeCæ r From, Anders Schlichtkrull & J\IeCø rgen Villadsen (2021): A Sequent Calculus for First-Order Logic Formalized in Isabelle/HOL. In: Stefania Monica & Federico Bergenti: Proceedings of the 36th Italian Conference on Computational Logic - CILC 2021, Parma, Italy, September 7-9, 2021, CEUR Workshop Proceedings 3002. CEUR-WS.org, pp. 107–121. Available at http://ceur-ws.org/Vol-3002/paper7.pdf.
  11. Graham Leach-Krouse (2017): Carnap: An Open Framework for Formal Reasoning in the Browser. In: Pedro Quaresma & Walther Neuper: Proceedings 6th International Workshop on Theorem proving components for Educational software, ThEdu@CADE 2017, Gothenburg, Sweden, 6 August 2017, EPTCS 267, pp. 70–88, doi:10.4204/EPTCS.267.5.
  12. Julius Michaelis & Tobias Nipkow (2018): Formalized Proof Systems for Propositional Logic. In: A. Abel, F. Nordvall Forsberg & A. Kaposi: 23rd International Conference on Types for Proofs and Programs (TYPES 2017), LIPIcs 104. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 6:1–6:16, doi:10.4230/LIPIcs.TYPES.2017.5.
  13. Tobias Nipkow (2012): Teaching Semantics with a Proof Assistant: No More LSD Trip Proofs. In: Viktor Kuncak & Andrey Rybalchenko: Verification, Model Checking, and Abstract Interpretation. Springer, pp. 24–38, doi:10.1007/978-3-642-27940-9_3.
  14. Giselle Reis, Zan Naeem & Mohammed Hashim (2020): Sequoia: A Playground for Logicians - (System Description). In: Nicolas Peltier & Viorica Sofronie-Stokkermans: Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, Lecture Notes in Computer Science 12167. Springer, pp. 480–488, doi:10.1007/978-3-030-51054-1_32.
  15. Anders Schlichtkrull, Jørgen Villadsen & Andreas Halkjær From (2018): Students' Proof Assistant (SPA). In: Pedro Quaresma & Walther Neuper: Proceedings 7th International Workshop on Theorem proving components for Educational software, ThEdu@FLoC 2018, Oxford, United Kingdom, 18 July 2018, EPTCS 290, pp. 1–13, doi:10.4204/EPTCS.290.1.
  16. Raymond M. Smullyan (1995): First-Order Logic. Dover Publications.
  17. Jørgen Villadsen (2020): Tautology Checkers in Isabelle and Haskell. In: Francesco Calimeri, Simona Perri & Ester Zumpano: Proceedings of the 35th Italian Conference on Computational Logic - CILC 2020, Rende, Italy, October 13-15, 2020, CEUR Workshop Proceedings 2710. CEUR-WS.org, pp. 327–341. Available at http://ceur-ws.org/Vol-2710/paper21.pdf.
  18. Jørgen Villadsen, Andreas Halkjær From & Anders Schlichtkrull (2018): Natural Deduction Assistant (NaDeA). In: Pedro Quaresma & Walther Neuper: Proceedings 7th International Workshop on Theorem proving components for Educational software, ThEdu@FLoC 2018, Oxford, United Kingdom, 18 July 2018, EPTCS 290, pp. 14–29, doi:10.4204/EPTCS.290.2.
  19. J\IeCø rgen Villadsen & Frederik Krogsdal Jacobsen (2021): Using Isabelle in Two Courses on Logic and Automated Reasoning. In: João F. Ferreira, Alexandra Mendes & Claudio Menghi: Formal Methods Teaching. Springer International Publishing, Cham, pp. 117–132, doi:10.1007/978-3-030-91550-6_9.
  20. Makarius Wenzel (2007): Isabelle/Isar - a generic framework for human-readable proof documents. From Insight to Proof - Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric. University of Bia\IeCł ystok 10(23), pp. 277–298.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org