1. S. Alves, B. Dundua, M. Florido & T. Kutsia (2018): Pattern-based calculi with finitary matching. Logic Journal of the IGPL 26, pp. 203–243, doi:10.1093/JIGPAL/jzx059.
  2. O. Bournez & F. Garnier (2005): Proving Positive Almost-sure Termination. In: J. Giesl: Term Rewriting and Applications (RTA 2005), Lecture Notes in Computer Science 3467. Springer, pp. 323–337, doi:10.1007/978-3-540-32033-3_24.
  3. O. Bournez & C. Kirchner (2002): Probabilistic Rewrite Strategies. Applications to ELAN. In: S. Tison: Rewriting Techniques and Applications (RTA 2002), Lecture Notes in Computer Science 2378. Springer, pp. 252–266, doi:10.1007/3-540-45610-4_18.
  4. U. Dal Lago, G. Guerrieri & W. Heijltjes (2020): Decomposing Probabilistic Lambda-Calculi. In: J. Goubault-Larrecq & B. König: Foundations of Software Science and Computation Structures (FoSSaCS 2020), Lecture Notes in Computer Science 12077. Springer, pp. 136–156, doi:10.1007/978-3-030-45231-5_8.
  5. A. Díaz-Caro (2017): A lambda calculus for density matrices with classical and probabilistic controls. In: B.-Y. E. Chang: Programming Languages and Systems (APLAS 2017), Lecture Notes in Computer Science 10695. Springer, pp. 448–467, doi:10.1007/978-3-319-71237-6_22. Available at arXiv:1705.00097.
  6. A. Díaz-Caro & G. Martínez (2018): Confluence in probabilistic rewriting. In: S. Alves & R. Wassermann: Logical and Semantic Frameworks with Applications (LSFA 2017), Electronic Notes in Teoretical Computer Science 338. Elsevier, pp. 115–131, doi:10.1016/j.entcs.2018.10.008.
  7. C. Faggian (2019): Probabilistic Rewriting: Normalization, Termination, and Unique Normal Forms. In: H. Geuvers: Formal Structures for Computation and Deduction (FSCD 2019), Leibniz International Proceedings in Informatics (LIPIcs) 131. Schloss Dagstuhl, pp. 19:1–19:25, doi:10.4230/LIPIcs.FSCD.2019.19.
  8. R. Romero (2020): Una extensión polimórfica para los λ-cálculos cuánticos λ_ρ y λ_ρ^. Universidad de Buenos Aires, Argentina. Available at

Comments and questions to:
For website issues: