Gadi Aleksandrowicz et. al. (2019):
Qiskit: An open-source framework for quantum computing,
doi:10.5281/zenodo.2562111.
Thorsten Altenkirch & Jonathan J. Grattage (2005):
A functional quantum programming language.
In: Proceedings of LICS-2005.
IEEE Computer Society,
pp. 249–258,
doi:10.1109/LICS.2005.1.
Pablo Arrighi & Alejandro Díaz-Caro (2012):
A System F accounting for scalars.
Logical Methods in Computer Science 8(1:11),
doi:10.2168/LMCS-8(1:11)2012.
Pablo Arrighi, Alejandro Díaz-Caro & Benoît Valiron (2017):
The vectorial λ-calculus.
Information and Computation 254(1),
pp. 105–139,
doi:10.1016/j.ic.2017.04.001.
Pablo Arrighi & Gilles Dowek (2008):
Linear-algebraic λ-calculus: higher-order, encodings, and confluence.
In: Andrei Voronkov: Rewritting Techniques and Applications (RTA 2008),
Lecture Notes in Computer Science 5117.
Springer,
pp. 17–31,
doi:10.1007/978-3-540-70590-1_2.
Pablo Arrighi & Gilles Dowek (2017):
Lineal: A linear-algebraic lambda-calculus.
Logical Methods in Computer Science 13(1:8),
doi:10.23638/LMCS-13(1:8)2017.
Nick Benton (1994):
A mixed linear and non-linear logic: Proofs, terms and models.
In: Leszek Pacholski & Jerzy Tiuryn: Computer Science Logic (CSL 1994),
Lecture Notes in Computer Science 933.
Springer,
pp. 121–135,
doi:10.1007/BFb0022251.
Garrett Birkhoff & John von Neumann (1936):
The logic of quantum mechanics.
Annals of Mathematics 37(4),
pp. 823–843,
doi:10.2307/1968621.
Kostia Chardonnet, Alexis Saurin & Benoît Valiron (2020):
Towards a Curry-Howard equivalence for linear, reversible computation.
In: Ivan Lanese & Mariusz Rawski: Reversible Computation (RC 2020),
Lecture Notes in Computer Science 12227.
Springer,
pp. 348–364,
doi:10.1007/978-3-030-52482-1_8.
Alejandro Díaz-Caro & Gilles Dowek (2017):
Typing quantum superpositions and measurement.
In: Carlos Martín-Vide, Roman Neruda & Miguel A. Vega-Rodríguez: Theory and Practice of Natural Computing (TPNC 2017),
Lecture Notes in Computer Science 10687.
Springer,
pp. 281–293,
doi:10.1007/978-3-319-71069-3_22.
Alejandro Díaz-Caro & Gilles Dowek (2019):
Proof normalisation in a logic identifying isomorphic propositions.
In: Herman Geuvers: 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019),
Leibniz International Proceedings in Informatics (LIPIcs) 131,
pp. 14:1–14:23,
doi:10.4230/LIPIcs.FSCD.2019.14.
Alejandro Díaz-Caro & Gilles Dowek (2020):
Extensional proofs in a propositional logic modulo isomorphisms.
arXiv:2002.03762.
Alejandro Díaz-Caro & Gilles Dowek (2021):
A new connective in natural deduction, and its application to quantum computing.
In: Antonio Cerone & Peter Csaba Ölveczky: Theoretical Aspects of Computing (ICTAC 2021),
Lecture Notes in Computer Science 12819.
Springer,
pp. 175–193,
doi:10.1007/978-3-030-85315-0_11.
Alejandro Díaz-Caro, Gilles Dowek & Juan Pablo Rinaldi (2019):
Two linearities for quantum computing in the lambda calculus.
BioSystems 186,
pp. 104012,
doi:10.1016/j.biosystems.2019.104012.
Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel & Benoît Valiron (2019):
Realizability in the unitary sphere.
In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019),
pp. 1–13,
doi:10.1109/LICS.2019.8785834.
Alejandro Díaz-Caro & Octavio Malherbe (2019):
A concrete categorical semantics for Lambda-S.
In: Beniamino Accattoli & Carlos Olarte: Logical and Semantic Frameworks with Applications (LSFA'18),
Electronic Notes in Theoretical Computer Science 344.
Elsevier,
pp. 83–100,
doi:10.1016/j.entcs.2019.07.006.
Alejandro Díaz-Caro & Octavio Malherbe (2020):
A categorical construction for the computational definition of vector spaces.
Applied Categorical Structures 28(5),
pp. 807–844,
doi:10.1007/s10485-020-09598-7.
Alejandro Díaz-Caro & Octavio Malherbe (2021):
A concrete model for a linear algebraic lambda calculus.
arXiv:1806.09236.
Alejandro Díaz-Caro & Octavio Malherbe (2021):
Quantum control in the unitary sphere: Lambda-S_1 and its categorical model.
arXiv:2012.05887.
Alejandro Díaz-Caro & Pablo E. Martínez López (2015):
Isomorphisms considered as equalities: Projecting functions and enhancing partial application through an implementation of λ^+.
In: Proceedings of the 27th Symposium on the Implementation and Application of Functional Programming Languages (IFL 2015),
ICPS Proceedings.
ACM,
pp. 9:1–9:11,
doi:10.1145/2897336.2897346.
Alejandro Díaz-Caro & Barbara Petit (2012):
Linearity in the non-deterministic call-by-value setting.
In: Luke Ong & Ruy de Queiroz: Logic, Language, Information and Computation (WoLLIC 2012),
Lecture Notes in Computer Science 7456,
pp. 216–231,
doi:10.1007/978-3-642-32621-9_16.
Michael Dummett (1991):
The logical basis of metaphysics.
Duckworth.
Gerhard Gentzen (1935):
Untersuchungen über das logische Schließen.
Mathematische Zeitschrift 39,
pp. 176–210,
doi:10.1007/BF01201353.
Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger & Benoît Valiron (2013):
Quipper: a scalable quantum programming language.
ACM SIGPLAN Notices (PLDI'13) 48(6),
pp. 333–342,
doi:10.1145/2491956.2462177.
Stephen C. Kleene (1945):
On the interpretation of intuitionistic number theory.
The Journal of Symbolic Logic 10(4),
pp. 109–124,
doi:10.2307/2269016.
Emanuel H. Knill (1996):
Conventions for quantum pseudocode.
Technical Report LA-UR-96-2724.
Los Alamos National Laboratory,
doi:10.2172/366453.
Jean-Louis Krivine (2009):
Realizability in classical logic.
Panoramas et synthèses: Interactive models of computation and program behaviour 27,
pp. 197–229.
Available at hal-00154500.
Louis Lemonnier, Kostia Chardonnet & Benoît Valiron (2021):
Categorical semantics of reversible pattern-matching.
arXiv:2109.05837.
Dave Miller & Elaine Pimentel (2013):
A formal framework for specifying sequent calculus proof systems.
Theoretical Computer Science 474,
pp. 98–116,
doi:10.1016/j.tcs.2012.12.008.
Alexandre Miquel (2011):
A survey of classical realizability.
In: Luke Ong: Typed Lambda Calculi and Applications (TLCA 2011),
Lecture Notes in Computer Science 6690,
pp. 1–2,
doi:10.1007/978-3-642-21691-6_1.
Sara Negri & Jan von Plato (2008):
Structural Proof Theory.
Cambridge University Press.
Michael Nielsen & Isaac Chuang (2000):
Quantum Computation and Quantum Information.
Cambridge University Press.,
doi:10.1017/CBO9780511976667.
Francisco Noriega & Alejandro Díaz-Caro (2020):
The Vectorial Lambda Calculus Revisited.
arXiv:2007.03648.
Michel Parigot (1991):
Free deduction: An analysis of ``Computations'' in classical logic.
In: A. Voronkov: Logic Programming,
Lecture Notes in Computer Science 592.
Springer,
pp. 361–380,
doi:10.1007/3-540-55460-2_27.
Jennifer Paykin, Robert Rand & Steve Zdancewic (2017):
QWIRE: A Core Language for Quantum Circuits.
In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017.
ACM,
pp. 846–858,
doi:10.1145/3009837.3009894.
Dag Prawitz (1965):
Natural deduction. A proof-theoretical study.
Almqvist & Wiksell.
Arthur N. Prior (1960):
The runabout inference-ticket.
Analysis 21(2),
pp. 38–39,
doi:10.1093/analys/21.2.38.
Stephen Read (2004):
Identity and harmony.
Analysis 64(2),
pp. 113–119,
doi:10.1093/analys/64.2.113.
Stephen Read (2010):
General-elimination harmony and the meaning of the logical constants.
Journal of Philosophical Logic 39,
pp. 557–576,
doi:10.1007/s10992-010-9133-7.
Amr Sabry, Benoît Valiron & Juliana Kaizer Vizzotto (2018):
From Symmetric Pattern-Matching to Quantum Control.
In: Christel Baier & Ugo Dal Lago: Foundations of Software Science and Computation Structures (FoSSaCS 2018),
Lecture Notes in Computer Science 10803.
Springer,
pp. 348–364,
doi:10.1007/978-3-319-89366-2_19.
Jeff W. Sanders & Paolo Zuliani (2000):
Quantum programming.
In: Roland Backhouse & José Nuno Oliveira: Mathematics of Program Construction (MPC 2000),
Lecture Notes in Computer Science 1837.
Springer,
pp. 80–99,
doi:10.1007/10722010_6.
Peter Schroeder-Heister (1984):
A natural extension of Natural deduction.
The Journal of Symbolic Logic 49(4),
pp. 1284–1300,
doi:10.2307/2274279.
Peter Selinger (2004):
Towards a quantum programming language.
Mathematical Structures in Computer Science 14(4),
pp. 527–586,
doi:10.1017/S0960129504004256.
Peter Selinger & Benoît Valiron (2006):
A lambda calculus for quantum computation with classical control.
Mathematical Structures in Computer Science 16(3),
pp. 527–552,
doi:10.1017/S0960129506005238.
Morten Heine Sørensen & PawełUrzyczyn (1998):
Lectures on the Curry-Howard isomorphism.
Studies in Logic and the Foundations of Mathematics 149.
Elsevier.
Cristian Sottile, Alejandro Díaz-Caro & Pablo E. Martínez López (2020):
Polymorphic System I.
In: Proceedings of the 32nd Symposium on the Implementation and Application of Functional Programming Languages (IFL 2020),
ICPS Proceedings.
ACM,
pp. 127–137,
doi:10.1145/3462172.3462198.