1. F. Alessi, M. Dezani-Ciancaglini & F. Honsell (2001): Filter Models and Easy Terms. In: ICTCS, LNCS 2202. Springer, pp. 17–37, doi:10.1007/3-540-45446-2_2.
  2. J. Baeten & B. Boerboom (1979): Omega can be anything it should not be. In: Koninklijke Netherlandse Akademie van Wetenschappen 41, pp. 111–120, doi:10.1016/1385-7258(79)90016-7.
  3. H. P. Barendregt (1984): The Lambda calculus: Its syntax and semantics. North-Holland, Amsterdam.
  4. H. P. Barendregt, M. Coppo & M. Dezani-Ciancaglini (1983): A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic 48(4), pp. 931–940, doi:10.2307/2273659.
  5. O. Bastonero, A. Pravato & S. Ronchi Della Rocca (1998): Structures for lazy semantics. In: PROCOMET, pp. 30–48.
  6. C. Berline (2000): From computation to foundations via functions and application: the λ-calculus and its webbed models. Theoretical Computer Science 249, pp. 81–161, doi:10.1016/S0304-3975(00)00057-8.
  7. G. Berry (1978): Stable models of typed lambda-calculi. In: ICALP. Springer-Verlag, Berlin, doi:10.1007/3-540-08860-1_7.
  8. A. Bucciarelli & T. Ehrhard (1991): Sequentiality and strong stability. In: LICS, pp. 138–145, doi:10.1109/LICS.1991.151638.
  9. A. Bucciarelli & A. Salibra (2003): The minimal graph model of lambda calculus. In: MFCS, pp. 300–307, doi:10.1007/978-3-540-45138-9_24.
  10. A. Bucciarelli & A. Salibra (2008): Graph lambda theories. Mathematical Structures in Computer Science 18(5), pp. 975–1004, doi:10.1017/S0960129508006683.
  11. A. Carraro & A. Salibra (2009): Reflexive Scott domains are not complete for the extensional lambda-calculus. In: LICS, pp. 91–100, doi:10.1109/LICS.2009.22.
  12. A. Carraro & A. Salibra (2012): Easy lambda-terms are not always simple. RAIRO - Theor. Inform. and Applic. 46(2), doi:10.1051/ita/2012005.
  13. M. Coppo & M. Dezani-Ciancaglini (1980): An Extension of the Basic Functionality Theory for the λ-Calculus. Notre-Dame Journal of Formal Logic 21(4), pp. 685–693, doi:10.1305/ndjfl/1093883253.
  14. M. Coppo, M. Dezani-Ciancaglini, F. Honsell & G. Longo (1984): Extended Type Structures and Filter Lambda Models. In: G. Lolli, G. Longo & A. Marcja: Logic Colloquium 82. Elsevier, pp. 241–262, doi:10.1016/S0049-237X(08)71819-6.
  15. P. Di Gianantonio, F. Honsell & G. D. Plotkin (1995): Uncountable limits and the lambda calculus. Nordic Journal of Computing 2(2), pp. 126–145.
  16. E. Engeler (1981): Algebras and combinators. Algebra Universalis 13(3), pp. 289–371, doi:10.1007/BF02483849.
  17. R. Kerth (1998): Isomorphism and equational equivalence of continuous lambda models. Studia Logica 61, pp. 403–415, doi:10.1023/A:1005018121791.
  18. C.P.J. Koymans (1982): Models of the Lambda Calculus. Information and Control 52(3), pp. 306–332, doi:10.1016/S0019-9958(82)90796-3.
  19. K. G. Larsen & G. Winskel (1991): Using Information Systems to Solve Recursive Domain Equations. Information and Computation 91(2), pp. 232–258, doi:10.1016/0890-5401(91)90068-D.
  20. G. Longo (1983): Set-theoretical models of λ-calculus: theories, expansions, isomorphisms. Annals of Pure and Applied Logic 24(2), pp. 153–188, doi:10.1016/0168-0072(83)90030-1.
  21. A. R. Meyer (1982): What is a model of the lambda calculus?. Information and Control 52, pp. 87–122, doi:10.1016/S0019-9958(82)80087-9.
  22. L. Paolini, M. Piccolo & S. Ronchi Della Rocca (2009): Logical semantics for stability. In: MFPS, Electronic Notes in Theoretical Computer Science 249. Elsevier, pp. 429–449, doi:10.1016/j.entcs.2009.07.101.
  23. G. D. Plotkin (1993): Set-Theoretical and Other Elementary Models of the lambda-Calculus. Theoretical Computer Science 121(1&2), pp. 351–409, doi:10.1016/0304-3975(93)90094-A.
  24. D. S. Scott (1972): Continuous lattices. In: F. W. Lawvere: Dalhousie Conf. on Toposes, algebraic geometry and logic. Springer, pp. 97–136, doi:10.1007/BFb0073967.
  25. D. S. Scott (1980): Lambda calculus: Some models, some philosophy. In: K. Kunen J. Barwise, H.J. Keisler: The Kleene Symposium. North-Holland, pp. 223–265, doi:10.1016/S0049-237X(08)71262-X.
  26. D. S. Scott (1982): Domains for Denotational Semantics. In: ICALP, Lecture Notes in Computer Science 140. Springer, pp. 577–613, doi:10.1007/BFb0012801.
  27. D.S. Scott (1976): Data types as lattices. SIAM Journal of Computing 5(3), pp. 522587, doi:10.1137/0205037.

Comments and questions to:
For website issues: