1. F. Aloul, A. Ramani, I. Markov & K. Sakallah (2003): Solving difficult instances of Boolean satisfiability in the presence of symmetry. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(9), pp. 1117–1137, doi:10.1109/TCAD.2003.816218.
  2. C. Areces & B. ten Cate (2006): Hybrid Logics. In: P. Blackburn, F. Wolter & J. van Benthem: Handbook of Modal Logics. Elsevier, pp. 821–868, doi:10.1016/S1570-2464(07)80017-6.
  3. C. Areces, R. Gennari, J. Heguiabehere & M. de Rijke (2000): Tree-Based Heuristics in Modal Theorem Proving. In: Proceedings of ECAI'2000, Berlin, Germany, pp. 199–203.
  4. C. Areces & D. Gorín (2010): Coinductive models and normal forms for modal logics (or how we learned to stop worrying and love coinduction). Journal of Applied Logic 8(4), pp. 305–318, doi:10.1016/j.jal.2010.08.010.
  5. C. Areces & D. Gorín (2011): Resolution with Order and Selection for Hybrid Logics. Journal of Automated Reasoning 46(1), pp. 1–42, doi:10.1007/s10817-010-9167-0.
  6. G. Audemard (2002): Reasoning by symmetry and function ordering in finite model generation. In: Proceedings of CADE-18, pp. 226–240, doi:10.1007/3-540-45620-1_19.
  7. G. Audemard, B. Mazure & L. Sais (2004): Dealing with Symmetries in Quantified Boolean Formulas. In: Proceedings of the 7th International Conference on Theory and Applications of Satisfiability Testing (SAT'04), pp. 257–262.
  8. B. Benhamou, T. Nabhani, R. Ostrowski & M. Saidi (2010): Enhancing Clause Learning by Symmetry in SAT Solvers. In: Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 329–335, doi:10.1109/ICTAI.2010.55.
  9. B. Benhamou & L. Sais (1992): Theoretical Study of Symmetries in Propositional Calculus and Applications. In: Proceedings of CADE-11, pp. 281–294, doi:10.1007/3-540-55602-8_172.
  10. B. Benhamou & L. Sais (1994): Tractability Through Symmetries in Propositional Calculus. Journal of Automated Reasoning 12(1), pp. 89–102, doi:10.1007/BF00881844.
  11. P. Blackburn, M. de Rijke & Y. Venema (2001): Modal Logic. Cambridge University Press.
  12. P. Blackburn, J. van Benthem & F. Wolter (2006): Handbook of Modal Logic. Studies in Logic and Practical Reasoning 3. Elsevier Science Inc., New York, NY, USA, doi:10.1016/S1570-2464(07)80004-8.
  13. C. Brown, L. Finkelstein & P. Purdom, Jr. (1996): Backtrack searching in the presence of symmetry. Nordic Journal of Computing 3(3), pp. 203–219, doi:10.1007/3-540-51083-4_51.
  14. J. Crawford (1992): A Theoretical Analysis of Reasoning By Symmetry in First-Order Logic. In: Proceedings of AAAI Workshop on Tractable Reasoning, San Jose, CA, pp. 17–22.
  15. J. Crawford, M. Ginsberg, E. Luks & A. Roy (1996): Symmetry-Breaking Predicates for Search Problems. In: Proceedings of KR 1996, pp. 148–159.
  16. P. Darga, M. Liffiton, K. Sakallah & I. Markov (2004): Exploiting structure in symmetry detection for CNF. In: Design Automation Conference, 2004. Proceedings. 41st, pp. 530–534, doi:10.1145/996566.996712.
  17. D. Déharbe, P. Fontaine, S. Merz & B. Woltzenlogel Paleo (2011): Exploiting Symmetry in SMT Problems. In: Proceedings of CADE-23, Lecture Notes in Computer Science 6803. Springer Berlin Heidelberg, pp. 222–236, doi:10.1007/978-3-642-22438-6_18.
  18. N. Een & N. Sörensson (2003): An Extensible SAT-solver. In: Proceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT'03), pp. 502–518, doi:10.1007/978-3-540-24605-3_37.
  19. J.B. Fraleigh & V.J. Katz (2003): A first course in abstract algebra. Addison-Wesley world student series. Addison-Wesley.
  20. G. Hoffmann (2010): Lightweight Hybrid Tableaux. Journal of Applied Logic 8(4), pp. 397–408, doi:10.1016/j.jal.2010.08.003.
  21. T. Junttila & P. Kaski (2007): Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs. In: Proceedings of the Workshop on Algorithm Engineering and Experiments, ALENEX 2007. SIAM.
  22. M. Kaminski & G. Smolka (2009): Terminating Tableau Systems for Hybrid Logic with Difference and Converse. Journal of Logic, Language and Information 18(4), pp. 437–464, doi:10.1007/s10849-009-9087-8.
  23. B. Krishnamurthy (1985): Short Proofs for Tricky Formulas. Acta Informatica 22(3), pp. 253–275, doi:10.1007/BF00265682.
  24. B. McKay (1990): Nauty User's Guide. Technical Report. Australian National University, Computer Science Department.
  25. E. Orbe, C. Areces & G. Infante-López (2012): A Note about Modal Symmetries. Technical Report. FaMAF, UNC. Available at
  26. P. Patel-Schneider & R. Sebastiani (2003): A New General Method to Generate Random Modal Formulae for Testing Decision Procedures. Journal of Artificial Intelligence Research 18, pp. 351–389.
  27. M. Prasad, A. Biere & A. Gupta (2005): A survey of recent advances in SAT-based formal verification. International Journal on Software Tools for Technology Transfer 7, pp. 156–173, doi:10.1007/s10009-004-0183-4.
  28. L. Ryan (2004): Efficient Algorithms For Clause-Learning SAT Solvers. Simon Fraser University.

Comments and questions to:
For website issues: