1. P. Arrighi & A. Díaz-Caro (2012): A System F Accounting for Scalars. Logical Methods in Computer Science 8(1:11), doi:10.2168/LMCS-8(1:11)2012.
  2. P. Arrighi, A. Díaz-Caro & B. Valiron (2012): A Type System for the Vectorial Aspects of the Linear-Algebraic Lambda-Calculus. In: E. Kashefi, J. Krivine & F. van Raamsdonk: Proceedings of DCM-2011, EPTCS 88, pp. 1–15, doi:10.4204/EPTCS.88.1.
  3. P. Arrighi & G. Dowek (2008): Linear-algebraic λ-calculus: higher-order, encodings, and confluence. In: A. Voronkov: Proceedings of RTA-2008, LNCS 5117, pp. 17–31, doi:10.1007/978-3-540-70590-1_2. Available at arXiv:quant-ph/0612199.
  4. A. Assaf & S. Perdrix (2012): Completeness of Algebraic CPS Simulations. In: E. Kashefi, J. Krivine & F. van Raamsdonk: Proceedings of DCM-2011, EPTCS 88, pp. 16–27, doi:10.4204/EPTCS.88.2.
  5. H. Barendregt (1984): The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam.
  6. G. Boudol (1994): Lambda-Calculi for (Strict) Parallel Functions. Information and Computation 108(1), pp. 51–127, doi:10.1006/inco.1994.1003.
  7. A. Bucciarelli, T. Ehrhard & G. Manzonetto (2012): A Relational Semantics for Parallelism and Non-Determinism in a Functional Setting. Annals of Pure and Applied Logic 163(7), pp. 918–934, doi:10.1016/j.apal.2011.09.008. Available at
  8. P. Buiras, A. Díaz-Caro & M. Jaskelioff (2012): Confluence via Strong Normalisation in an Algebraic λ-Calculus with Rewriting. In: S. Ronchi della Rocca & E. Pimentel: Proceedings of LSFA-2011, EPTCS 81, pp. 16–29, doi:10.4204/EPTCS.81.2.
  9. T. Coquand & G. Huet (1988): The Calculus of Constructions. Information and Computation 76(2–3), pp. 95–120, doi:10.1016/0890-5401(88)90005-3. Available at
  10. U. de'Liguoro & A. Piperno (1995): Non Deterministic Extensions of Untyped λ-calculus. Information and Computation 122(2), pp. 149–177, doi:10.1006/inco.1995.1145.
  11. M. Dezani-Ciancaglini, U. de'Liguoro & A. Piperno (1996): Filter models for conjunctive-disjunctive lambda-calculi. Theoretical Computer Science 170(1–2), pp. 83–128, doi:10.1016/S0304-3975(96)80703-1.
  12. M. Dezani-Ciancaglini, U. de'Liguoro & A. Piperno (1998): A filter model for concurrent λ-calculus. SIAM Journal on Computing 27(5), pp. 1376–1419, doi:10.1137/S0097539794275860.
  13. R. Di Cosmo (1995): Isomorphisms of types: from λ-calculus to information retrieval and language design. Progress in Theoretical Computer Science. Birkhauser, doi:10.1007/978-1-4612-2572-0.
  14. A. Díaz-Caro, G. Manzonetto & M. Pagani (2013): Call-by-value non-determinism in a linear logic type discipline. In: S. Artemov & A. Nerode: Proceedings of LFCS'13, LNCS 7734, pp. 164–178, doi:10.1007/978-3-642-35722-0_12.
  15. A. Díaz-Caro, S. Perdrix, C. Tasson & B. Valiron (2010): Equivalence of Algebraic λ-calculi. In: HOR-2010, pp. 6–11. Available at arXiv:1005.2897v1.
  16. A. Díaz-Caro & B. Petit (2012): Linearity in the non-deterministic call-by-value setting. In: L. Ong & R. de Queiroz: Proceedings of WoLLIC'12, LNCS 7456, pp. 216–231, doi:10.1007/978-3-642-32621-9_16. Available at arXiv:1011.3542.
  17. G. Dowek, T. Hardin & C. Kirchner (2003): Theorem proving modulo. Journal of Automated Reasoning 31(1), pp. 33–72, doi:10.1023/A:1027357912519.
  18. G. Dowek & T. Jiang (2011): On the expressive power of schemes. Information and Computation 209, pp. 1231–1245, doi:10.1016/j.ic.2011.06.003.
  19. G. Dowek & B. Werner (2003): Proof normalization modulo. The Journal of Symbolic Logic 68(4), pp. 1289–1316, doi:10.2178/jsl/1067620188.
  20. J. Garrigue & H. Aït-Kaci (1994): The typed polymorphic label-selective λ-calculus. In: Proceedings of POPL'94, ACM SIGPLAN, pp. 35–47, doi:10.1145/174675.174434.
  21. G. Manzonetto (2008): Models and theories of lambda calculus. Università Ca'Foscari (Venice) and Université Paris Diderot (Paris 7). Available at
  22. P. Martin-Löf (1984): Intuitionistic type theory. Studies in proof theory. Bibliopolis.
  23. C. Monroe, D. Meekhof, B. King, W. Itano & D. Wineland (1995): Demonstration of a Fundamental Quantum Logic Gate. Physical Review Letters 75(25), pp. 4714–4717, doi:10.1103/PhysRevLett.75.4714.
  24. M. Pagani & S. Ronchi Della Rocca (2010): Linearity, non-determinism and solvability. Fundamental Informaticae 103(1–4), pp. 173–202, doi:10.3233/FI-2010-324.
  25. B. Valiron (2010): Orthogonality and Algebraic Lambda-Calculus. In: B. Coecke, P. Panangaden & P. Selinger: Proceedings of QPL-2010, pp. 169–175. Available at
  26. L. Vaux (2009): The algebraic lambda calculus. Mathematical Structures in Computer Science 19(5), pp. 1029–1059, doi:10.1017/S0960129509990089.
  27. W.K. Wootters & W.H. Zurek (1982): A Single Quantum Cannot be Cloned. Nature 299, pp. 802–803, doi:10.1038/299802a0.

Comments and questions to:
For website issues: