1. A. Avron, J. Ben-Naim & B. Konikowska (2007): Cut-free Ordinary Sequent Calculi for Logics Having Generalized Finite-Valued Semantics. Logica Universalis 1(1), pp. 41–70, doi:10.1007/978-3-642-32621-9_24.
  2. M. Baaz, C.G. Fermüller & R. Zach (1993): Systematic Construction of Natural Deduction Systems for Many-valued Logics: Extended Report. Technical Report TUW-E185.2-BFZ.1-93.
  3. D.A. Bochvar (1938): Ob odnom trechzna čnom isčislenii i ego primenenii k analizu paradoksov klassiceskogo funkcional'nogo isčislenija. Matematicheskii Sbornik 4(46)(2), pp. 287–308. Translated to English by M. Bergmann as On a Three-valued Logical Calculus and Its Application to the Analysis of the Paradoxes of the Classical Extended Functional Calculus. History and Philosophy of Logic 2:87–112, 1981.
  4. M.E. Coniglio & M.I. Corbalán (2011): Recovering sense in the logics of nonsense (Recuperando o sentido nas lógicas do sem-sentido, in Portuguese). In: 16th Brazilian Logic Conference (XVI EBL): Book of Abstracts, Petrópolis, Brazil, pp. 38–38.
  5. M.I. Corbalán (2012): Local Recovering Connectives (Conectivos de Restauração Local, in Portuguese). Masters thesis. IFCH-State University of Campinas, Brazil.
  6. S. Halldén (1949): The Logic of Nonsense. Uppsala Univ., Uppsala.
  7. G. Malinowski (2007): Many-valued logic and its philosophy. In: D.M. Gabbay & J. Woods: Handbook of the History of Logic, vol. 8: The Many Valued and Nonmonotonic Turn in Logic. North Holland, Amsterdam, pp. 13–94, doi:10.1016/S1874-5857(07)80004-5.
  8. M. Volpe, J. Marcos & C. Caleiro (2012): Classic-Like Cut-Based Tableau Systems for Finite-Valued Logics. In: Proceedings of 19th WoLLIC, LNCS 7456, Springer, pp. 321–335, doi:10.1007/s11787-006-0003-6.
  9. T. Williamson (1994): Vagueness. Routledge, London & New York.

Comments and questions to:
For website issues: