References

  1. Henk Barendregt (1984): The Lambda-Calculus, its Syntax and Semantics. Stud. Logic Found. Math., vol. 103. North-Holland.
  2. Gérard Boudol (1993): The Lambda-Calculus with Multiplicities. INRIA Report 2025. Available at citeseer.ist.psu.edu/article/boudol93lambdacalculus.html.
  3. Ugo de'Liguoro & Adolfo Piperno (1995): Non Deterministic Extensions of Untyped Lambda-Calculus. Inf. Comput. 122(2), pp. 149–177, doi:10.1006/inco.1995.1145.
  4. Thomas Ehrhard & Laurent Regnier (2003): The Differential Lambda-Calculus. Theor. Comput. Sci. 309(1), pp. 1–41, doi:10.1016/S0304-3975(03)00392-X.
  5. Thomas Ehrhard & Laurent Regnier (2006): Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms. In: CiE, LNCS 3988, pp. 186–197, doi:10.1007/11780342_20.
  6. Thomas Ehrhard & Laurent Regnier (2008): Uniformity and the Taylor Expansion of Ordinary Lambda-Terms. Theor. Comput. Sci. 403(2-3), pp. 347–372, doi:10.1016/j.tcs.2008.06.001.
  7. Michele Pagani & Simona Ronchi Della Rocca (2010): Linearity, Non-determinism and Solvability. Fundamenta Informaticae 104, pp. 1–30, doi:10.3233/FI-2010-324.
  8. Michele Pagani & Simona Ronchi Della Rocca (2010): Solvability in Resource Lambda-Calculus. In: Luke Ong: FOSSACS, Lecture Notes in Comp. Sci. 6014, pp. 358–373, doi:10.1007/978-3-642-12032-9_25.
  9. Michele Pagani & Paolo Tranquilli (2009): Parallel Reduction in Resource Lambda-Calculus. In: APLAS, LNCS 5904, pp. 226–242, doi:10.1007/978-3-642-10672-9_17.
  10. Paolo Tranquilli (2009): Nets between Determinism and Nondeterminism. Ph.D. thesis. Università Roma Tre/Université Paris Diderot (Paris 7).
  11. Paolo Tranquilli (2011): Intuitionistic differential nets and lambda-calculus. Theor. Comput. Sci. 412(20), pp. 1979–1997, doi:10.1016/j.tcs.2010.12.022.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org